Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparsity and Privacy in Secret Sharing: A Fundamental Trade-Off (2308.06413v1)

Published 11 Aug 2023 in cs.CR, cs.DC, cs.IT, and math.IT

Abstract: This work investigates the design of sparse secret sharing schemes that encode a sparse private matrix into sparse shares. This investigation is motivated by distributed computing, where the multiplication of sparse and private matrices is moved from a computationally weak main node to untrusted worker machines. Classical secret-sharing schemes produce dense shares. However, sparsity can help speed up the computation. We show that, for matrices with i.i.d. entries, sparsity in the shares comes at a fundamental cost of weaker privacy. We derive a fundamental tradeoff between sparsity and privacy and construct optimal sparse secret sharing schemes that produce shares that leak the minimum amount of information for a desired sparsity of the shares. We apply our schemes to distributed sparse and private matrix multiplication schemes with no colluding workers while tolerating stragglers. For the setting of two non-communicating clusters of workers, we design a sparse one-time pad so that no private information is leaked to a cluster of untrusted and colluding workers, and the shares with bounded but non-zero leakage are assigned to a cluster of partially trusted workers. We conclude by discussing the necessity of using permutations for matrices with correlated entries.

Citations (3)

Summary

We haven't generated a summary for this paper yet.