Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CATS v2: Hybrid encoders for robust medical segmentation (2308.06377v3)

Published 11 Aug 2023 in eess.IV and cs.CV

Abstract: Convolutional Neural Networks (CNNs) have exhibited strong performance in medical image segmentation tasks by capturing high-level (local) information, such as edges and textures. However, due to the limited field of view of convolution kernel, it is hard for CNNs to fully represent global information. Recently, transformers have shown good performance for medical image segmentation due to their ability to better model long-range dependencies. Nevertheless, transformers struggle to capture high-level spatial features as effectively as CNNs. A good segmentation model should learn a better representation from local and global features to be both precise and semantically accurate. In our previous work, we proposed CATS, which is a U-shaped segmentation network augmented with transformer encoder. In this work, we further extend this model and propose CATS v2 with hybrid encoders. Specifically, hybrid encoders consist of a CNN-based encoder path paralleled to a transformer path with a shifted window, which better leverage both local and global information to produce robust 3D medical image segmentation. We fuse the information from the convolutional encoder and the transformer at the skip connections of different resolutions to form the final segmentation. The proposed method is evaluated on three public challenge datasets: Beyond the Cranial Vault (BTCV), Cross-Modality Domain Adaptation (CrossMoDA) and task 5 of Medical Segmentation Decathlon (MSD-5), to segment abdominal organs, vestibular schwannoma (VS) and prostate, respectively. Compared with the state-of-the-art methods, our approach demonstrates superior performance in terms of higher Dice scores. Our code is publicly available at https://github.com/MedICL-VU/CATS.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Hao Li (803 papers)
  2. Han Liu (340 papers)
  3. Dewei Hu (20 papers)
  4. Xing Yao (21 papers)
  5. Jiacheng Wang (132 papers)
  6. Ipek Oguz (37 papers)
Citations (1)
Github Logo Streamline Icon: https://streamlinehq.com

GitHub