Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comparing the quality of neural network uncertainty estimates for classification problems (2308.05903v1)

Published 11 Aug 2023 in cs.LG and stat.ML

Abstract: Traditional deep learning (DL) models are powerful classifiers, but many approaches do not provide uncertainties for their estimates. Uncertainty quantification (UQ) methods for DL models have received increased attention in the literature due to their usefulness in decision making, particularly for high-consequence decisions. However, there has been little research done on how to evaluate the quality of such methods. We use statistical methods of frequentist interval coverage and interval width to evaluate the quality of credible intervals, and expected calibration error to evaluate classification predicted confidence. These metrics are evaluated on Bayesian neural networks (BNN) fit using Markov Chain Monte Carlo (MCMC) and variational inference (VI), bootstrapped neural networks (NN), Deep Ensembles (DE), and Monte Carlo (MC) dropout. We apply these different UQ for DL methods to a hyperspectral image target detection problem and show the inconsistency of the different methods' results and the necessity of a UQ quality metric. To reconcile these differences and choose a UQ method that appropriately quantifies the uncertainty, we create a simulated data set with fully parameterized probability distribution for a two-class classification problem. The gold standard MCMC performs the best overall, and the bootstrapped NN is a close second, requiring the same computational expense as DE. Through this comparison, we demonstrate that, for a given data set, different models can produce uncertainty estimates of markedly different quality. This in turn points to a great need for principled assessment methods of UQ quality in DL applications.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Daniel Ries (9 papers)
  2. Joshua Michalenko (3 papers)
  3. Tyler Ganter (1 paper)
  4. Rashad Imad-Fayez Baiyasi (1 paper)
  5. Jason Adams (6 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.