Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimizing Performance of Feedforward and Convolutional Neural Networks through Dynamic Activation Functions (2308.05724v2)

Published 10 Aug 2023 in cs.LG, cs.CE, and cs.NE

Abstract: Deep learning training training algorithms are a huge success in recent years in many fields including speech, text,image video etc. Deeper and deeper layers are proposed with huge success with resnet structures having around 152 layers. Shallow convolution neural networks(CNN's) are still an active research, where some phenomena are still unexplained. Activation functions used in the network are of utmost importance, as they provide non linearity to the networks. Relu's are the most commonly used activation function.We show a complex piece-wise linear(PWL) activation in the hidden layer. We show that these PWL activations work much better than relu activations in our networks for convolution neural networks and multilayer perceptrons. Result comparison in PyTorch for shallow and deep CNNs are given to further strengthen our case.

Citations (3)

Summary

We haven't generated a summary for this paper yet.