2000 character limit reached
Boundary-preserving Lamperti-splitting schemes for some Stochastic Differential Equations (2308.04075v3)
Published 8 Aug 2023 in math.NA and cs.NA
Abstract: We propose and analyse boundary-preserving schemes for the strong approximations of some scalar SDEs with non-globally Lipschitz drift and diffusion coefficients whose state-space is bounded. The schemes consists of a Lamperti transform followed by a Lie--Trotter splitting. We prove $L{p}(\Omega)$-convergence of order $1$, for every $p \geq 1$, of the schemes and exploit the Lamperti transform to confine the numerical approximations to the state-space of the considered SDE. We provide numerical experiments that confirm the theoretical results and compare the proposed Lamperti-splitting schemes to other numerical schemes for SDEs.
- A. Alfonsi. Strong order one convergence of a drift implicit Euler scheme: application to the CIR process. Statist. Probab. Lett., 83(2):602–607, 2013.
- A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metallurgica, 27(6):1085–1095, 1979.
- Positivity-preserving schemes for some nonlinear stochastic PDEs. Submitted 20.02.2023 to appear in the proceedings of the Sixteenth International Conference Zaragoza-Pau on Mathematics and its Applications 2022.
- Analysis of a positivity-preserving splitting scheme for some nonlinear stochastic heat equations. Preprint, arXiv:2302.08858, 2023.
- C.-E. Bréhier and L. Goudenège. Analysis of some splitting schemes for the stochastic Allen-Cahn equation. Discrete Contin. Dyn. Syst. Ser. B, 24(8):4169–4190, 2019.
- First order strong convergence of an explicit scheme for the stochastic SIS epidemic model. J. Comput. Appl. Math., 392:Paper No. 113482, 16, 2021.
- On the LambertW function. Adv Comput Math, 5:329–359, 1996.
- Mathematical tools for understanding infectious disease dynamics. Princeton Series in Theoretical and Computational Biology. Princeton University Press, Princeton, NJ, 2013.
- T. Funaki. The scaling limit for a stochastic pde and the separation of phases. Probability Theory and Related Fields, 102:221–288, 1995.
- A stochastic differential equation SIS epidemic model. SIAM Journal on Applied Mathematics, 71(3):876–902, 2011.
- Geometric numerical integration, volume 31 of Springer Series in Computational Mathematics. Springer, Heidelberg, 2010. Structure-preserving algorithms for ordinary differential equations, Reprint of the second (2006) edition.
- N. Halidias. Constructing positivity preserving numerical schemes for the two-factor CIR model. Monte Carlo Methods Appl., 21(4):313–323, 2015.
- N. Halidias and I. S. Stamatiou. Boundary preserving explicit scheme for the Aït-Sahalia model. Discrete and Continuous Dynamical Systems - B, 28(1):648–664, 2023.
- Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients. Ann. Appl. Probab., 22(4):1611–1641, 2012.
- S. Karlin and H. E. Taylor. A second course in stochastic processes. Academic Press, 1981.
- C. Kelly and G. J. Lord. An adaptive splitting method for the Cox-Ingersoll-Ross process. Appl. Numer. Math., 186:252–273, 2023.
- Y. Kiouvrekis and I. S. Stamatiou. Domain preserving and strongly converging explicit scheme for the stochastic SIS epidemic model. Preprint, arXiv:2307.14404, 2023.
- F. C. Klebaner. Introduction to Stochastic Calculus with Applications. Imperial Collage Press, 3rd edition, 2012.
- P. E. Kloeden and A. Neuenkirch. The pathwise convergence of approximation schemes for stochastic differential equations. LMS J. Comput. Math., 10:235–253, 2007.
- P. E. Kloeden and E. Platen. Numerical solution of stochastic differential equations, volume 23 of Applications of Mathematics (New York). Springer-Verlag, Berlin, 1992.
- An introduction to computational stochastic PDEs. Cambridge Texts in Applied Mathematics. Cambridge University Press, New York, 2014.
- H. P. McKean Jr. Nagumo’s equation. Advances in Mathematics, 4(3):209–223, 1970.
- Splitting methods. Acta Numer., 11:341–434, 2002.
- J. K. Møller and H. Madsen. From state dependent diffusion to constant diffusion in stochastic differential equations by the lamperti transform. Technical report, Technical University of Denmark, DTU Informatics, Building 321. IMM-Technical Report-2010-16, 2010.
- E. Moro and H. Schurz. Boundary preserving semianalytic numerical algorithms for stochastic differential equations. SIAM J. Sci. Comput., 29(4):1525–1549, 2007.
- A. Neuenkirch and L. Szpruch. First order strong approximations of scalar SDEs defined in a domain. Numer. Math., 128(1):103–136, 2014.
- B. Øksendal. Stochastic differential equations. Universitext. Springer-Verlag, Berlin, sixth edition, 2003. An introduction with applications.
- S. Sabanis. Euler approximations with varying coefficients: the case of superlinearly growing diffusion coefficients. Ann. Appl. Probab., 26(4):2083–2105, 2016.
- H. Schurz. Numerical regularization for sdes: Construction of nonnegative solutions. Dyn. Syst. Appl., 5(1):323–352, 1996.
- H. Yang and J. Huang. First order strong convergence of positivity preserving logarithmic Euler-Maruyama method for the stochastic SIS epidemic model. Appl. Math. Lett., 121:Paper No. 107451, 7, 2021.
- H. Yang and J. Huang. Strong convergence and extinction of positivity preserving explicit scheme for the stochastic SIS epidemic model. Numer. Algor., 2023.
- Positivity preserving logarithmic Euler-Maruyama type scheme for stochastic differential equations. Commun. Nonlinear Sci. Numer. Simul., 101:Paper No. 105895, 21, 2021.