Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Benchmarking Study of Matching Algorithms for Knowledge Graph Entity Alignment (2308.03961v1)

Published 8 Aug 2023 in cs.DB

Abstract: How to identify those equivalent entities between knowledge graphs (KGs), which is called Entity Alignment (EA), is a long-standing challenge. So far, many methods have been proposed, with recent focus on leveraging Deep Learning to solve this problem. However, we observe that most of the efforts has been paid to having better representation of entities, rather than improving entity matching from the learned representations. In fact, how to efficiently infer the entity pairs from this similarity matrix, which is essentially a matching problem, has been largely ignored by the community. Motivated by this observation, we conduct an in-depth analysis on existing algorithms that are particularly designed for solving this matching problem, and propose a novel matching method, named Bidirectional Matching (BMat). Our extensive experimental results on public datasets indicate that there is currently no single silver bullet solution for EA. In other words, different classes of entity similarity estimation may require different matching algorithms to reach the best EA results for each class. We finally conclude that using PARIS, the state-of-the-art EA approach, with BMat gives the best combination in terms of EA performance and the algorithm's time and space complexity.

Citations (2)

Summary

We haven't generated a summary for this paper yet.