Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SSL-SoilNet: A Hybrid Transformer-based Framework with Self-Supervised Learning for Large-scale Soil Organic Carbon Prediction (2308.03586v3)

Published 7 Aug 2023 in cs.CV and eess.IV

Abstract: Soil Organic Carbon (SOC) constitutes a fundamental component of terrestrial ecosystem functionality, playing a pivotal role in nutrient cycling, hydrological balance, and erosion mitigation. Precise mapping of SOC distribution is imperative for the quantification of ecosystem services, notably carbon sequestration and soil fertility enhancement. Digital soil mapping (DSM) leverages statistical models and advanced technologies, including ML, to accurately map soil properties, such as SOC, utilizing diverse data sources like satellite imagery, topography, remote sensing indices, and climate series. Within the domain of ML, self-supervised learning (SSL), which exploits unlabeled data, has gained prominence in recent years. This study introduces a novel approach that aims to learn the geographical link between multimodal features via self-supervised contrastive learning, employing pretrained Vision Transformers (ViT) for image inputs and Transformers for climate data, before fine-tuning the model with ground reference samples. The proposed approach has undergone rigorous testing on two distinct large-scale datasets, with results indicating its superiority over traditional supervised learning models, which depends solely on labeled data. Furthermore, through the utilization of various evaluation metrics (e.g., RMSE, MAE, CCC, etc.), the proposed model exhibits higher accuracy when compared to other conventional ML algorithms like random forest and gradient boosting. This model is a robust tool for predicting SOC and contributes to the advancement of DSM techniques, thereby facilitating land management and decision-making processes based on accurate information.

Citations (1)

Summary

We haven't generated a summary for this paper yet.