Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Redundancy-aware Transformer for Video Question Answering (2308.03267v1)

Published 7 Aug 2023 in cs.CV and cs.AI

Abstract: This paper identifies two kinds of redundancy in the current VideoQA paradigm. Specifically, the current video encoders tend to holistically embed all video clues at different granularities in a hierarchical manner, which inevitably introduces \textit{neighboring-frame redundancy} that can overwhelm detailed visual clues at the object level. Subsequently, prevailing vision-language fusion designs introduce the \textit{cross-modal redundancy} by exhaustively fusing all visual elements with question tokens without explicitly differentiating their pairwise vision-language interactions, thus making a pernicious impact on the answering. To this end, we propose a novel transformer-based architecture, that aims to model VideoQA in a redundancy-aware manner. To address the neighboring-frame redundancy, we introduce a video encoder structure that emphasizes the object-level change in neighboring frames, while adopting an out-of-neighboring message-passing scheme that imposes attention only on distant frames. As for the cross-modal redundancy, we equip our fusion module with a novel adaptive sampling, which explicitly differentiates the vision-language interactions by identifying a small subset of visual elements that exclusively support the answer. Upon these advancements, we find this \underline{R}edundancy-\underline{a}ware trans\underline{former} (RaFormer) can achieve state-of-the-art results on multiple VideoQA benchmarks.

Citations (14)

Summary

We haven't generated a summary for this paper yet.