Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Iterative Magnitude Pruning as a Renormalisation Group: A Study in The Context of The Lottery Ticket Hypothesis (2308.03128v1)

Published 6 Aug 2023 in cs.LG and stat.ML

Abstract: This thesis delves into the intricate world of Deep Neural Networks (DNNs), focusing on the exciting concept of the Lottery Ticket Hypothesis (LTH). The LTH posits that within extensive DNNs, smaller, trainable subnetworks termed "winning tickets", can achieve performance comparable to the full model. A key process in LTH, Iterative Magnitude Pruning (IMP), incrementally eliminates minimal weights, emulating stepwise learning in DNNs. Once we identify these winning tickets, we further investigate their "universality". In other words, we check if a winning ticket that works well for one specific problem could also work well for other, similar problems. We also bridge the divide between the IMP and the Renormalisation Group (RG) theory in physics, promoting a more rigorous understanding of IMP.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Abu-Al Hassan (1 paper)

Summary

We haven't generated a summary for this paper yet.