Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inelastic and elastic parton scatterings in the strongly interacting quark-gluon plasma (2308.03105v3)

Published 6 Aug 2023 in hep-ph and nucl-th

Abstract: We investigate the role of inelastic processes in the strongly interacting quark-gluon plasma (sQGP) based on the effective dynamical quasi-particle model (DQPM). In the DQPM the non-perturbative properties of the sQGP at finite temperature $T$ and baryon chemical potential $\mu_B$ are described in terms of strongly interacting off-shell partons (quarks and gluons) with dynamically generated spectral functions whose properties are adjusted to reproduce the lQCD EoS for the QGP in thermodynamic equilibrium. For the first time the massive gluon radiation processes from the off-shell quark-quark ($q+q$) and quark-gluon ($q+g$) scatterings are calculated explicitly within leading order Feynman diagrams with effective propagators and vertices from the DQPM without any further approximations. We present the results for the energy and temperature dependencies of the total and differential radiative cross sections and compare them to the corresponding elastic cross sections. We show that our results reproduce the pQCD calculations in the limit of zero masses and widths of quasiparticles. Also we study the $\mu_B$ dependence of the inelastic cross sections. Moreover, we present estimates for the transition rate and relaxation time of radiative versus elastic scatterings in the sQGP.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. I. Arsene et al. (BRAHMS), Nucl. Phys. A 757, 1 (2005), arXiv:nucl-ex/0410020 .
  2. K. Adcox et al. (PHENIX), Nucl. Phys. A 757, 184 (2005), arXiv:nucl-ex/0410003 .
  3. B. B. Back et al. (PHOBOS), Nucl. Phys. A 757, 28 (2005), arXiv:nucl-ex/0410022 .
  4. J. Adams et al. (STAR), Nucl. Phys. A 757, 102 (2005), arXiv:nucl-ex/0501009 .
  5. E. V. Shuryak, Nucl. Phys. A 750, 64 (2005), arXiv:hep-ph/0405066 .
  6. M. Gyulassy and L. McLerran, Nucl. Phys. A 750, 30 (2005), arXiv:nucl-th/0405013 .
  7. A. Peshier and W. Cassing, Phys. Rev. Lett. 94, 172301 (2005), arXiv:hep-ph/0502138 .
  8. W. Cassing, Nucl. Phys. A 795, 70 (2007a), arXiv:0707.3033 [nucl-th] .
  9. W. Cassing, Nucl. Phys. A 791, 365 (2007b), arXiv:0704.1410 [nucl-th] .
  10. T. Steinert and W. Cassing, Phys. Rev. C 89, 035203 (2014), arXiv:1312.3189 [hep-ph] .
  11. W. Cassing, Eur. Phys. J. ST 168, 3 (2009), arXiv:0808.0715 [nucl-th] .
  12. M. Bleicher and E. Bratkovskaya, Prog. Part. Nucl. Phys. 122, 103920 (2022).
  13. M. Djordjevic, Phys. Rev. C 74, 064907 (2006), arXiv:nucl-th/0603066 .
  14. S. Cao and X.-N. Wang, Rept. Prog. Phys. 84, 024301 (2021), arXiv:2002.04028 [hep-ph] .
  15. S. Cao et al., Phys. Rev. C 99, 054907 (2019), arXiv:1809.07894 [nucl-th] .
  16. R. K. Ellis and J. C. Sexton, Nucl. Phys. B 269, 445 (1986).
  17. L. D. Landau and I. Pomeranchuk, Dokl. Akad. Nauk Ser. Fiz. 92, 535 (1953).
  18. A. B. Migdal, Phys. Rev. 103, 1811 (1956).
  19. B. G. Zakharov, JETP Lett. 63, 952 (1996), arXiv:hep-ph/9607440 .
  20. B. G. Zakharov, J. Phys. G 48, 055009 (2021), arXiv:2007.09772 [hep-ph] .
  21. J. a. Barata and Y. Mehtar-Tani, JHEP 10, 176 (2020), arXiv:2004.02323 [hep-ph] .
  22. J. F. Gunion and G. Bertsch, Phys. Rev. D 25, 746 (1982).
  23. S. K. Das and J.-e. Alam, Phys. Rev. D 82, 051502 (2010), arXiv:1007.4405 [nucl-th] .
  24. J. Uphoff, Open heavy flavor and other hard probes in ultra-relativistic heavy-ion collisions, Ph.D. thesis, Frankfurt U. (2014).
  25. M. Djordjevic and U. W. Heinz, Phys. Rev. Lett. 101, 022302 (2008), arXiv:0802.1230 [nucl-th] .
  26. M. Djordjevic, Phys. Rev. C 80, 064909 (2009), arXiv:0903.4591 [nucl-th] .
  27. M. Djordjevic and M. Djordjevic, Phys. Lett. B 709, 229 (2012), arXiv:1105.4359 [nucl-th] .
  28. S. Caron-Huot, Phys. Rev. D 79, 065039 (2009), arXiv:0811.1603 [hep-ph] .
  29. G. D. Moore and N. Schlusser, Phys. Rev. D 101, 014505 (2020), [Erratum: Phys.Rev.D 101, 059903 (2020)], arXiv:1911.13127 [hep-lat] .
  30. S. Schlichting and I. Soudi, Phys. Rev. D 105, 076002 (2022), arXiv:2111.13731 [hep-ph] .
  31. H. A. Andrews et al., J. Phys. G 47, 065102 (2020), arXiv:1808.03689 [hep-ph] .
  32. B. Vanderheyden and G. Baym, J. Statist. Phys. 93, 843 (1998), arXiv:hep-ph/9803300 .
  33. M. L. Bellac, Thermal Field Theory, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2011).
  34. O. Kaczmarek and F. Zantow, Phys. Rev. D 71, 114510 (2005), arXiv:hep-lat/0503017 .
  35. O. Kaczmarek, PoS CPOD07, 043 (2007), arXiv:0710.0498 [hep-lat] .
  36. W. E. Caswell, Phys. Rev. Lett. 33, 244 (1974).
  37. A. Peshier, Phys. Rev. D 63, 105004 (2001), arXiv:hep-ph/0011250 .
Citations (3)

Summary

We haven't generated a summary for this paper yet.