Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PowerSimulationsDynamics.jl -- An Open Source Modeling Package for Modern Power Systems with Inverter-Based Resources (2308.02921v3)

Published 5 Aug 2023 in eess.SY, cs.SY, and math.OC

Abstract: In this paper we present the development of an open-source simulation toolbox, PowerSimulationsDynamics.jl, to study the dynamic response of power systems, focusing on the requirements to model systems with high penetrations of Inverter-Based Resources (IBRs). PowerSimulationsDynamics.jl is implemented in Julia and features a rich library of synchronous generator, inverter, and load models. In addition, it allows the study of quasi-static phasors and electromagnetic dq models that use a dynamic network representation. Case studies and validation exercises show that PowerSimulationsDynamics.jl results closely match other commercial and open-source simulation tools.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. M. Paolone, T. Gaunt, X. Guillaud, M. Liserre, S. Meliopoulos, A. Monti, T. Van Cutsem, V. Vittal, and C. Vournas, “Fundamentals of power systems modelling in the presence of converter-interfaced generation,” Electric Power Systems Research, vol. 189, p. 106811, 2020.
  2. N. Hatziargyriou, J. Milanovic, C. Rahmann, V. Ajjarapu, C. Canizares, I. Erlich, D. Hill, I. Hiskens, I. Kamwa, B. Pal et al., “Definition and classification of power system stability revisited & extended,” IEEE Trans. on Power Systems, 2020.
  3. E. Rehman, M. Miller, J. Schmall, and S. H. F. Huang, “Dynamic stability assessment of high penetration of renewable generation in the ercot grid,” ERCOT, Tech. Rep., 04 2018, version 1.0.
  4. Y. Cheng, L. Fan, J. Rose, S.-H. Huang, J. Schmall, X. Wang, X. Xie, J. Shair, J. R. Ramamurthy, N. Modi, C. Li, C. Wang, S. Shah, B. Pal, Z. Miao, A. Isaacs, J. Mahseredjian, and J. Zhou, “Real-world subsynchronous oscillation events in power grids with high penetrations of inverter-based resources,” IEEE Trans. on Power Systems, vol. 38, no. 1, pp. 316–330, 2023.
  5. U. Markovic, O. Stanojev, P. Aristidou, E. Vrettos, D. Callaway, and G. Hug, “Understanding small-signal stability of low-inertia systems,” IEEE Trans. on Power Systems, vol. 36, no. 5, pp. 3997–4017, 2021.
  6. F. Milano, “An open source power system analysis toolbox,” IEEE Trans. on Power systems, vol. 20, no. 3, pp. 1199–1206, 2005.
  7. H. Cui, F. Li, and K. Tomsovic, “Hybrid symbolic-numeric framework for power system modeling and analysis,” IEEE Trans. on Power Systems, vol. 36, no. 2, pp. 1373–1384, 2020.
  8. A. Guironnet, M. Saugier, S. Petitrenaud, F. Xavier, and P. Panciatici, “Towards an open-source solution using modelica for time-domain simulation of power systems,” in 2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe).   IEEE, oct 2018.
  9. A. Plietzsch, R. Kogler, S. Auer, J. Merino, A. Gil-de Muro, J. Liße, C. Vogel, and F. Hellmann, “PowerDynamics.jl—an experimentally validated open-source package for the dynamical analysis of power grids,” SoftwareX, vol. 17, p. 100861, 2022.
  10. M. Xiong, B. Wang, D. Vaidhynathan, J. Maack, M. Reynolds, A. Hoke, K. Sun, and J. Tan, “Paraemt: An open source, parallelizable, and hpc-compatible emt simulator for large-scale ibr-rich power grids,” IEEE Trans. on Power Delivery, pp. 1–11, 2023.
  11. B. Palmer, W. Perkins, Y. Chen, S. Jin, D. C. allahan, K. Glass, R. Diao, M. Rice, S. Elbert, M. a Vallem, and Z. Huang, “Gridpacktm: A framework for developing power grid simulations on high-performance computing platforms,” The International Journal of High Performance Computing Applications, vol. 30, no. 2, pp. 223–240, 2016. [Online]. Available: https://doi.org/10.1177/1094342015607609
  12. J. D. Lara, R. Henriquez-Auba, D. Ramasubramanian, S. Dhople, D. S. Callaway, and S. Sanders, “Revisiting power systems time-domain simulation methods and models,” IEEE Trans. on Power Systems, pp. 1–16, 2023.
  13. C. Rackauckas and Q. Nie, “DifferentialEquations.jl – a performant and feature-rich ecosystem for solving differential equations in Julia,” Journal of Open Research Software, vol. 5, no. 1, 2017.
  14. F. Milano, “Semi-implicit formulation of differential-algebraic equations for transient stability analysis,” IEEE Trans. on Power Systems, vol. 31, no. 6, pp. 4534–4543, 2016.
  15. C. Rackauckas and Q. Nie, “Confederated modular differential equation apis for accelerated algorithm development and benchmarking,” Advances in Engineering Software, vol. 132, pp. 1–6, 2019.
  16. J. Revels, M. Lubin, and T. Papamarkou, “Forward-mode automatic differentiation in julia,” arXiv preprint arXiv:1607.07892, 2016.
  17. R. Henriquez-Auba, J. D. Lara, C. Roberts, and D. S. Callaway, “Grid forming inverter small signal stability: Examining role of line and voltage dynamics,” in IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society.   IEEE, 2020, pp. 4063–4068.
  18. “Methods: The Julia Language,” https://docs.julialang.org/en/v1/manual/-methods/, accessed: 2019-09-25.
  19. J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh approach to numerical computing,” SIAM review, vol. 59, no. 1, pp. 65–98, 2017.
  20. A. Bojańczyk, “Complexity of solving linear systems in different models of computation,” SIAM Journal on Numerical Analysis, vol. 21, no. 3, pp. 591–603, 1984.
  21. C. C. Margossian, “A review of automatic differentiation and its efficient implementation,” Wiley interdisciplinary reviews: data mining and knowledge discovery, vol. 9, no. 4, p. e1305, 2019.
  22. J. D. Lara, C. Barrows, D. Thom, D. Krishnamurthy, and D. Callaway, “Powersystems. jl—a power system data management package for large scale modeling,” SoftwareX, vol. 15, p. 100747, 2021.
  23. R. Henriquez-Auba, J. D. Lara, and D. S. Callaway, “Small-signal stability of load and network dynamics on grid-forming inverters,” in 2024 IEEE PES Innovative Smart Grid Technologies North America.   IEEE, 2024, pp. 1–5.
  24. R. W. Kenyon, A. Sajadi, A. Hoke, and B.-M. Hodge, “Open-source pscad grid-following and grid-forming inverters and a benchmark for zero-inertia power system simulations,” in 2021 IEEE Kansas Power and Energy Conference (KPEC), 2021, pp. 1–6.
  25. H. Yuan, R. S. Biswas, J. Tan, and Y. Zhang, “Developing a reduced 240-bus wecc dynamic model for frequency response study of high renewable integration,” in 2020 IEEE/PES Transmission and Distribution Conference and Exposition (T&D).   IEEE, 2020, pp. 1–5.
  26. A. Sajadi, J. A. Rañola, R. W. Kenyon, B.-M. Hodge, and B. Mather, “Dynamics and stability of power systems with high shares of grid-following inverter-based resources: A tutorial,” IEEE Access, 2023.
Citations (6)

Summary

We haven't generated a summary for this paper yet.