Advances in Bosonic Quantum Error Correction with Gottesman-Kitaev-Preskill Codes: Theory, Engineering and Applications (2308.02913v4)
Abstract: Encoding quantum information into a set of harmonic oscillators is considered a hardware efficient approach to mitigate noise for reliable quantum information processing. Various codes have been proposed to encode a qubit into an oscillator -- including cat codes, binomial codes and Gottesman-Kitaev-Preskill (GKP) codes -- and are among the first to reach a break-even point for quantum error correction. Though GKP codes are widely recognized for their promise in quantum computation, they also facilitate near-optimal quantum communication rates in bosonic channels and offer the ability to safeguard arbitrary quantum states of oscillators. This review focuses on the basic working mechanism, performance characterization, and the many applications of GKP codes -- emphasizing recent experimental progress in superconducting circuit architectures and theoretical advancements in multimode GKP qubit codes and oscillators-to-oscillators (O2O) codes. We begin with a preliminary continuous-variable formalism needed for bosonic codes. We then proceed to the quantum engineering involved to physically realize GKP states. We take a deep dive into GKP stabilization and preparation in superconducting architectures and examine proposals for realizing GKP states in the optical domain (along with a concise review of GKP realization in trapped-ion platforms). Finally, we present multimode GKP qubits and GKP-O2O codes, examine code performance and discuss applications of GKP codes in quantum information processing tasks such as computing, communication, and sensing.
- P. W. Shor, SIAM Journal on Computing 41, 303 (1999).
- L. K. Grover, in Proceedings, 28th Annual ACM Symposium on the Theory of Computing (STOC) (1996) pp. 212–219.
- H. J. Kimble, Nature 453, 1023 (2008).
- W. Kozlowski and S. Wehner, in Proceedings of the Sixth Annual ACM International Conference on Nanoscale Computing and Communication (2019) pp. 1–7.
- Z. Zhang and Q. Zhuang, Quantum Sci. Technol. (2020), 10.1088/2058-9565/abd4c3.
- J. Fiurášek, Phys. Rev. Lett. 89, 137904 (2002).
- G. Giedke and J. I. Cirac, Phys. Rev. A 66, 032316 (2002).
- S. Lloyd and S. L. Braunstein, Phys. Rev. Lett. 82, 1784 (1999).
- A. L. Grimsmo and S. Puri, PRX Quantum 2, 020101 (2021).
- V. V. Albert, “Bosonic coding: introduction and use cases,” (2022), arXiv:2211.05714 [quant-ph] .
- B. J. Chapman, S. J. de Graaf, S. H. Xue, Y. Zhang, J. Teoh, J. C. Curtis, T. Tsunoda, A. Eickbusch, A. P. Read, A. Koottandavida, et al., “A high on-off ratio beamsplitter interaction for gates on bosonically encoded qubits,” (2022), arXiv:2212.11929 [quant-ph] .
- Y. Lu, A. Maiti, J. W. O. Garmon, S. Ganjam, Y. Zhang, J. Claes, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, “A high-fidelity microwave beamsplitter with a parity-protected converter,” (2023), arXiv:2303.00959 [quant-ph] .
- A. A. Diringer, E. Blumenthal, A. Grinberg, L. Jiang, and S. Hacohen-Gourgy, “Conditional not displacement: fast multi-oscillator control with a single qubit,” (2022), arXiv:2301.09831 [quant-ph] .
- J. Wu, A. J. Brady, and Q. Zhuang, “Optimal encoding of oscillators into more oscillators,” (2022a), arXiv:2212.11970 [quant-ph] .
- J. Harrington and J. Preskill, Phys. Rev. A 64, 062301 (2001).
- S. Konno, W. Asavanant, F. Hanamura, H. Nagayoshi, K. Fukui, A. Sakaguchi, R. Ide, F. China, M. Yabuno, S. Miki, H. Terai, K. Takase, M. Endo, P. Marek, R. Filip, P. van Loock, and A. Furusawa, “Propagating Gottesman-Kitaev-Preskill states encoded in an optical oscillator,” (2023), arXiv:2309.02306 [quant-ph] .
- C. H. Bennett and G. Brassard, Theoretical Computer Science 560, Part 1, 7 (2014).
- A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
- V. Sivak, A. Eickbusch, B. Royer, S. Singh, I. Tsioutsios, S. Ganjam, A. Miano, B. Brock, A. Ding, L. Frunzio, et al., “Real-time quantum error correction beyond break-even,” (2022a), arXiv:2211.09116 [quant-ph] .
- A. Serafini, Quantum Continuous Variables: A Primer of Theoretical Methods (CRC press, 2017).
- J. Preskill, “Lecture notes for physics 229: Quantum information and computation,” (accessed June 17, 2023).
- S. L. Braunstein, Phys. Rev. A 71, 055801 (2005).
- J. H. Shapiro, “6.453 Quantum Optical Communication, Readings and Lecture Slides, 20-21,” https://mitocw.ups.edu.ec/courses/electrical-engineering-and-computer-science/6-453-quantum-optical-communication-fall-2016/readings-and-lecture-slides/index.htm (2016), [Online; accessed 20-June-2023].
- A. Botero and B. Reznik, Phys. Rev. A 67, 052311 (2003).
- G. Adesso, ‘‘Entanglement of Gaussian states,” (2007), arXiv:quant-ph/0702069 [quant-ph] .
- A. S. Holevo, Probl. Inf. Transm. 43, 1 (2007).
- J. Wu and Q. Zhuang, Phys. Rev. Applied 15, 034073 (2021).
- R. Takagi and Q. Zhuang, Phys. Rev. A 97, 062337 (2018).
- M. Walschaers, PRX Quantum 2, 030204 (2021).
- U. Chabaud and M. Walschaers, Phys. Rev. Lett. 130, 090602 (2023).
- S. Sefi and P. van Loock, Phys. Rev. Lett. 107, 170501 (2011).
- S. Ghose and B. C. Sanders, J. Mod. Opt. 54, 855 (2007).
- K. K. Sabapathy and C. Weedbrook, Phys. Rev. A 97, 062315 (2018).
- L. Lachman and R. Filip, Progress in Quantum Electronics , 100395 (2022).
- R. L. Hudson, Reports on Mathematical Physics 6, 249 (1974).
- F. Soto and P. Claverie, Journal of Mathematical Physics 24, 97 (1983).
- A. Mari and J. Eisert, Phys. Rev. Lett. 109, 230503 (2012).
- S. Lloyd, Phys. Rev. A 55, 1613 (1997).
- P. W. Shor, in Lecture notes, MSRI Workshop on Quantum Computation (2002).
- I. Devetak, IEEE Trans. Inf. Theory 51, 44 (2005).
- M. M. Wilde, Quantum Information Theory (Cambridge University Press, 2013).
- G. Smith and J. Yard, Science 321, 1812 (2008).
- M. B. Hastings, Nat. Phys. 5, 255 (2009).
- I. Devetak and P. W. Shor, Commun. Math. Phys. 256, 287 (2005).
- M. M. Wilde and H. Qi, IEEE Transactions on Information Theory 64, 7802 (2018).
- A. S. Holevo and R. F. Werner, Phys. Rev. A 63, 032312 (2001).
- J. Eisert and M. M. Wolf, “Gaussian Quantum Channels,” (2005), arXiv:quant-ph/0505151 [quant-ph] .
- J. Conrad, Phys. Rev. A 103, 022404 (2021).
- O. Milul, B. Guttel, U. Goldblatt, S. Hazanov, L. M. Joshi, D. Chausovsky, N. Kahn, E. Çiftyürek, F. Lafont, and S. Rosenblum, “A superconducting quantum memory with tens of milliseconds coherence time,” (2023), arXiv:2302.06442 [quant-ph] .
- L. Lami and M. M. Wilde, Nat. Photon. , 1 (2023).
- B. M. Terhal and D. Weigand, Phys. Rev. A 93, 012315 (2016).
- I. Rojkov, P. M. Röggla, M. Wagener, M. Fontboté-Schmidt, S. Welte, J. Home, and F. Reiter, “Two-qubit operations for finite-energy Gottesman-Kitaev-Preskill encodings,” (2023), arXiv:2305.05262 [quant-ph] .
- J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, Vol. 290 (Springer Science & Business Media, 2013).
- M. Viazovska, in Proceedings of the International Congress of Mathematicians: Rio de Janeiro 2018 (World Scientific, 2018) pp. 455–466.
- F. Schmidt and P. van Loock, Phys. Rev. A 105, 042427 (2022).
- M. P. Stafford and N. C. Menicucci, “Biased Gottesman-Kitaev-Preskill repetition code,” (2022), arXiv:2212.11397 [quant-ph] .
- K. Noh and C. Chamberland, Phys. Rev. A 101, 012316 (2020).
- J. Zak, Phys. Rev. Lett. 19, 1385 (1967).
- M. H. Shaw, A. C. Doherty, and A. L. Grimsmo, “Stabilizer subsystem decompositions for single- and multi-mode gottesman-kitaev-preskill codes,” (2022), arXiv:2210.14919 [quant-ph] .
- G. Pantaleoni, B. Q. Baragiola, and N. C. Menicucci, “The Zak transform: a framework for quantum computation with the Gottesman-Kitaev-Preskill code,” (2023), arXiv:2210.09494 [quant-ph] .
- J. Zak, Solid State Physics, 27, 1 (1972).
- S. Ganeshan and M. Levin, Phys. Rev. B 93, 075118 (2016).
- B. M. Terhal, Rev. Mod. Phys. 87, 307 (2015).
- D. A. Lidar and T. A. Brun, eds., Quantum Error Correction (Cambridge University Press, 2013).
- A. Kitaev, Annals of Physics 303, 2 (2003).
- B. Douçot and L. B. Ioffe, Reports on Progress in Physics 75, 072001 (2012).
- X. C. Kolesnikow, R. W. Bomantara, A. C. Doherty, and A. L. Grimsmo, “Gottesman-Kitaev-Preskill state preparation using periodic driving,” (2023), arXiv:2303.03541 [quant-ph] .
- L. Guo and V. Peano, “Engineering Arbitrary Hamiltonians in Phase Space,” (2023), arXiv:2302.04257 [quant-ph] .
- Z. Wang and A. H. Safavi-Naeini, “Quantum control and noise protection of a Floquet 0−π0𝜋0-\pi0 - italic_π qubit,” (2023), arXiv:2304.05601 [quant-ph] .
- P. G. Harper, Proc. Phys. Soc. A 68, 879 (1955).
- D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976).
- J. E. Mooij and C. J. P. M. Harmans, New J. Phys. 7, 219 (2005).
- J. E. Mooij and Y. V. Nazarov, Nat. Phys. 2, 169 (2006).
- U. Vool and M. Devoret, International Journal of Circuit Theory and Applications 45, 897 (2017).
- M. H. Devoret, J. Supercond. Nov. Magn. 34, 1633 (2021).
- C. L. Hogan, The Bell System Technical Journal 31, 1 (1952).
- G. Viola and D. P. DiVincenzo, Phys. Rev. X 4, 021019 (2014).
- S. Bosco and D. P. DiVincenzo, Phys. Rev. B 95, 195317 (2017).
- S. Singh, B. Royer, and S. M. Girvin, “Composite pulses in Phase Space,” (In Preparation).
- C. Siegele and P. Campagne-Ibarcq, “Robust suppression of noise propagation in GKP error-correction,” (2023), arXiv:2302.12088 [quant-ph] .
- E. Kapit, Quantum Sci. Technol. 2, 033002 (2017).
- L.-A. Sellem, R. Robin, P. Campagne-Ibarcq, and P. Rouchon, “Stability and decoherence rates of a GKP qubit protected by dissipation,” (2023b), arXiv:2304.03806 [quant-ph] .
- M. A. Nielsen, Phys. Lett. A 303, 249 (2002).
- J. Hastrup and U. L. Andersen, Quantum Sci. Technol. 6, 035016 (2021).
- J. Hastrup and U. L. Andersen, Phys. Rev. Lett. 128, 170503 (2022).
- B. J. Brown and S. Roberts, Phys. Rev. Res. 2, 033305 (2020).
- J. Conrad, J. Eisert, and J.-P. Seifert, “Good Gottesman-Kitaev-Preskill codes from the NTRU cryptosystem,” (2023), arXiv:2303.02432 [quant-ph] .
- M. Lin, C. Chamberland, and K. Noh, “Closest lattice point decoding for multimode Gottesman-Kitaev-Preskill codes,” (2023a), arXiv:2303.04702 [quant-ph] .
- D. Micciancio and P. Voulgaris, in Proceedings of the forty-second ACM symposium on Theory of computing (2010) pp. 351–358.
- V. Kolmogorov, Mathematical Programming Computation 1, 43 (2009).
- S. Lloyd and J.-J. E. Slotine, Phys. Rev. Lett. 80, 4088 (1998).
- S. L. Braunstein, Phys. Rev. Lett. 80, 4084 (1998).
- S. L. Braunstein, Quantum Information with Continuous Variables 80, 19 (2003).
- L. Hänggli and R. König, IEEE Trans. Inf. Theory 68, 1068 (2021).
- T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed. (John Wiley & Sons, 2006).
- K. Azuma, S. E. Economou, D. Elkouss, P. Hilaire, L. Jiang, H.-K. Lo, and I. Tzitrin, “Quantum repeaters: From quantum networks to the quantum internet,” (2022), arXiv:2212.10820 [quant-ph] .
- F. Schmidt, D. Miller, and P. van Loock, “Error-corrected quantum repeaters with GKP qudits,” (2023), arXiv:2303.16034 [quant-ph] .
- F. Rozpędek, K. P. Seshadreesan, P. Polakos, L. Jiang, and S. Guha, “All-photonic multiplexed quantum repeaters based on concatenated bosonic and discrete-variable quantum codes,” (2023), arXiv:2303.14923 [quant-ph] .
- H. Shi and Q. Zhuang, npj Quantum Inf. 9, 27 (2023).
- Q. Zhuang and Z. Zhang, Phys. Rev. X 9, 041023 (2019).
- J. D. Teoh, P. Winkel, H. K. Babla, B. J. Chapman, J. Claes, S. J. de Graaf, J. W. O. Garmon, W. D. Kalfus, Y. Lu, A. Maiti, K. Sahay, N. Thakur, T. Tsunoda, S. H. Xue, L. Frunzio, S. M. Girvin, S. Puri, and R. J. Schoelkopf, “Dual-rail encoding with superconducting cavities,” (2022), arXiv:2212.12077 [quant-ph] .
- P. Scholl, A. L. Shaw, R. B.-S. Tsai, R. Finkelstein, J. Choi, and M. Endres, “Erasure conversion in a high-fidelity Rydberg quantum simulator,” (2023), arXiv:2305.03406 [quant-ph] .
- A. Kubica, A. Haim, Y. Vaknin, F. Brandão, and A. Retzker, “Erasure qubits: Overcoming the T1subscript𝑇1T_{1}italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT limit in superconducting circuits,” (2022), arXiv:2208.05461 [quant-ph] .
- H. Levine, A. Haim, J. S. C. Hung, N. Alidoust, M. Kalaee, L. DeLorenzo, E. A. Wollack, P. A. Arriola, A. Khalajhedayati, R. Sanil, Y. Vaknin, A. Kubica, A. A. Clerk, D. Hover, F. Brandão, A. Retzker, and O. Painter, “Demonstrating a long-coherence dual-rail erasure qubit using tunable transmons,” (2023), arXiv:2307.08737 [quant-ph] .