Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Meta-Analysis and Systematic Review for Anomaly Network Intrusion Detection Systems: Detection Methods, Dataset, Validation Methodology, and Challenges (2308.02805v2)

Published 5 Aug 2023 in cs.CR, cs.SY, and eess.SY

Abstract: Intrusion detection systems (IDSs) built on AI are presented as latent mechanisms for actively detecting fresh attacks over a complex network. Although review papers are used the systematic review or simple methods to analyse and criticize the anomaly NIDS works, the current review uses a traditional way as a quantitative description to find current gaps by synthesizing and summarizing the data comparison without considering algorithms performance. This paper presents a systematic and meta-analysis study of AI for network intrusion detection systems (NIDS) focusing on deep learning (DL) and ML approaches in network security. Deep learning algorithms are explained in their structure, and data intrusion network is justified based on an infrastructure of networks and attack types. By conducting a meta-analysis and debating the validation of the DL and ML approach by effectiveness, used dataset, detected attacks, classification task, and time complexity, we offer a thorough benchmarking assessment of the current NIDS-based publications-based systematic approach. The proposed method is considered reviewing works for the anomaly-based network intrusion detection system (anomaly-NIDS) models. Furthermore, the effectiveness of proposed algorithms and selected datasets are discussed for the recent direction and improvements of ML and DL to the NIDS. The future trends for improving an anomaly-IDS for continuing detection in the evolution of cyberattacks are highlighted in several research studies.

Citations (6)

Summary

We haven't generated a summary for this paper yet.