Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 35 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 461 tok/s Pro
Kimi K2 228 tok/s Pro
2000 character limit reached

Surrogate Empowered Sim2Real Transfer of Deep Reinforcement Learning for ORC Superheat Control (2308.02765v1)

Published 5 Aug 2023 in eess.SY, cs.AI, and cs.SY

Abstract: The Organic Rankine Cycle (ORC) is widely used in industrial waste heat recovery due to its simple structure and easy maintenance. However, in the context of smart manufacturing in the process industry, traditional model-based optimization control methods are unable to adapt to the varying operating conditions of the ORC system or sudden changes in operating modes. Deep reinforcement learning (DRL) has significant advantages in situations with uncertainty as it directly achieves control objectives by interacting with the environment without requiring an explicit model of the controlled plant. Nevertheless, direct application of DRL to physical ORC systems presents unacceptable safety risks, and its generalization performance under model-plant mismatch is insufficient to support ORC control requirements. Therefore, this paper proposes a Sim2Real transfer learning-based DRL control method for ORC superheat control, which aims to provide a new simple, feasible, and user-friendly solution for energy system optimization control. Experimental results show that the proposed method greatly improves the training speed of DRL in ORC control problems and solves the generalization performance issue of the agent under multiple operating conditions through Sim2Real transfer.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube