Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
94 tokens/sec
Gemini 2.5 Pro Premium
55 tokens/sec
GPT-5 Medium
38 tokens/sec
GPT-5 High Premium
24 tokens/sec
GPT-4o
106 tokens/sec
DeepSeek R1 via Azure Premium
98 tokens/sec
GPT OSS 120B via Groq Premium
518 tokens/sec
Kimi K2 via Groq Premium
188 tokens/sec
2000 character limit reached

Wasserstein-penalized Entropy closure: A use case for stochastic particle methods (2308.02607v1)

Published 4 Aug 2023 in physics.comp-ph

Abstract: We introduce a framework for generating samples of a distribution given a finite number of its moments, targeted to particle-based solutions of kinetic equations and rarefied gas flow simulations. Our model, referred to as the Wasserstein-Entropy distribution (WE), couples a physically-motivated Wasserstein penalty term to the traditional maximum-entropy distribution (MED) functions, which serves to regularize the latter. The penalty term becomes negligible near the local equilibrium, reducing the proposed model to the MED, known to reproduce the hydrodynamic limit. However, in contrast to the standard MED, the proposed WE closure can cover the entire physically realizable moment space, including the so-called Junk line. We also propose an efficient Monte Carlo algorithm for generating samples of the unknown distribution which is expected to outperform traditional non-linear optimization approaches used to solve the MED problem. Numerical tests demonstrate that, given moments up to the heat flux -- that is equivalent to the information contained in the Chapman-Enskog distribution -- the proposed methodology provides a reliable closure in the collision-dominated and early transition regime. Applications to larger rarefaction demand information from higher-order moments, which can be incorporated within the proposed closure.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.