Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Language models as master equation solvers (2308.02514v2)

Published 29 Jul 2023 in cs.LG, cs.AI, and math.DS

Abstract: Master equations are of fundamental importance in modeling stochastic dynamical systems.However, solving master equations is challenging due to the exponential increase in the number of possible states or trajectories with the dimension of the state space. In this study, we propose repurposing LLMs as a machine learning approach to solve master equations. We design a prompt-based neural network to map rate parameters, initial conditions, and time values directly to the state joint probability distribution that exactly matches the input contexts. In this way, we approximate the solution of the master equation in its most general form. We train the network using the policy gradient algorithm within the reinforcement learning framework, with feedback rewards provided by a set of variational autoregressive models. By applying this approach to representative examples, we observe high accuracy for both multi-module and high-dimensional systems. The trained network also exhibits extrapolating ability, extending its predictability to unseen data. Our findings establish the connection between LLMs and master equations, highlighting the possibility of using a single pretrained large model to solve any master equation.

Summary

We haven't generated a summary for this paper yet.