Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sim-to-Real Vision-depth Fusion CNNs for Robust Pose Estimation Aboard Autonomous Nano-quadcopter (2308.01833v1)

Published 3 Aug 2023 in cs.RO

Abstract: Nano-quadcopters are versatile platforms attracting the interest of both academia and industry. Their tiny form factor, i.e., $\,$10 cm diameter, makes them particularly useful in narrow scenarios and harmless in human proximity. However, these advantages come at the price of ultra-constrained onboard computational and sensorial resources for autonomous operations. This work addresses the task of estimating human pose aboard nano-drones by fusing depth and images in a novel CNN exclusively trained in simulation yet capable of robust predictions in the real world. We extend a commercial off-the-shelf (COTS) Crazyflie nano-drone -- equipped with a 320$\times$240 px camera and an ultra-low-power System-on-Chip -- with a novel multi-zone (8$\times$8) depth sensor. We design and compare different deep-learning models that fuse depth and image inputs. Our models are trained exclusively on simulated data for both inputs, and transfer well to the real world: field testing shows an improvement of 58% and 51% of our depth+camera system w.r.t. a camera-only State-of-the-Art baseline on the horizontal and angular mean pose errors, respectively. Our prototype is based on COTS components, which facilitates reproducibility and adoption of this novel class of systems.

Citations (5)

Summary

We haven't generated a summary for this paper yet.