Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
35 tokens/sec
2000 character limit reached

Search for Dark-Matter-Nucleon Interactions with a Dark Mediator in PandaX-4T (2308.01540v3)

Published 3 Aug 2023 in hep-ex and hep-ph

Abstract: We report results of a search for dark-matter-nucleon interactions via a dark mediator using optimized low-energy data from the PandaX-4T liquid xenon experiment. With the ionization-signal-only data and utilizing the Migdal effect, we set the most stringent limits on the cross section for dark matter masses ranging from 30~$\rm{MeV/c2}$ to 2~$\rm{GeV/c2}$. Under the assumption that the dark mediator is a dark photon that decays into scalar dark matter pairs in the early Universe, we rule out significant parameter space of such thermal relic dark-matter model.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. Y. Meng et al. (PandaX-4T), Phys. Rev. Lett. 127, 261802 (2021), arXiv:2107.13438 [hep-ex] .
  2. J. Aalbers et al. (LZ), Phys. Rev. Lett. 131, 041002 (2023a), arXiv:2207.03764 [hep-ex] .
  3. E. Aprile et al. (XENON),   (2023), arXiv:2303.14729 [hep-ex] .
  4. X. Ren et al. (PandaX-II), Phys. Rev. Lett. 121, 021304 (2018), arXiv:1802.06912 [hep-ph] .
  5. J. Yang et al. (PandaX-II), Sci. China Phys. Mech. Astron. 64, 111062 (2021), arXiv:2104.14724 [hep-ex] .
  6. X. Ning et al. (PandaX), Nature 618, 47 (2023a).
  7. X. Ning et al. (PandaX),   (2023b), arXiv:2301.03010 [hep-ex] .
  8. G. W. Bennett et al. (Muon g-2), Phys. Rev. D 73, 072003 (2006), arXiv:hep-ex/0602035 .
  9. B. Abi et al. (Muon g-2), Phys. Rev. Lett. 126, 141801 (2021), arXiv:2104.03281 [hep-ex] .
  10. A. J. Krasznahorkay et al., Phys. Rev. Lett. 116, 042501 (2016), arXiv:1504.01527 [nucl-ex] .
  11. S. Tulin and H.-B. Yu, Phys. Rept. 730, 1 (2018), arXiv:1705.02358 [hep-ph] .
  12. C. Hearty, J. Phys. Conf. Ser. 2391, 012011 (2022).
  13. Y. M. Andreev et al. (NA64),   (2023), arXiv:2307.02404 [hep-ex] .
  14. A. A. Aguilar-Arevalo et al. (MiniBooNE DM), Phys. Rev. D 98, 112004 (2018), arXiv:1807.06137 [hep-ex] .
  15. L. B. Auerbach et al. (LSND), Phys. Rev. D 63, 112001 (2001), arXiv:hep-ex/0101039 .
  16. J. P. Lees et al. (BaBar), Phys. Rev. Lett. 119, 131804 (2017), arXiv:1702.03327 [hep-ex] .
  17. J. Chen et al., Sci. China Phys. Mech. Astron. 66, 211062 (2023).
  18. See https://www.caen.it/products/v1725/.
  19. D. Baxter et al.,   (2021), arXiv:2105.00599 [hep-ex] .
  20. E. Aprile et al. (XENON), Phys. Rev. Lett. 123, 241803 (2019a), arXiv:1907.12771 [hep-ex] .
  21. J. Aalbers et al. (LZ),  (2023b), arXiv:2307.15753 [hep-ex] .
  22. D. S. Akerib et al. (LUX), Phys. Rev. Lett. 122, 131301 (2019), arXiv:1811.11241 [astro-ph.CO] .
  23. A. H. Abdelhameed et al. (CRESST), Phys. Rev. D 100, 102002 (2019), arXiv:1904.00498 [astro-ph.CO] .
  24. M. F. Albakry et al. (SuperCDMS),   (2023), arXiv:2302.09115 [hep-ex] .
  25. Z. Z. Liu et al. (CDEX), Phys. Rev. D 105, 052005 (2022), arXiv:2111.11243 [hep-ex] .
  26. One should also be aware that there are ongoing efforts to directly measure the Migdal effect in liquid xenon using neutron calibration Araújo et al. (2023); Xu et al. (2023); Bang et al. (2023). The findings are still contradictory, therefore the systematic uncertainty in the theoretical prediction remains to be settled.
  27. W. Ma et al. (PandaX), Phys. Rev. Lett. 130, 021802 (2023), arXiv:2207.04883 [hep-ex] .
  28. S. Li et al. (PandaX), Phys. Rev. Lett. 130, 261001 (2023), arXiv:2212.10067 [hep-ex] .
  29. See https://pandax.sjtu.edu.cn/public/data_release/PandaX-4T/run0_S2_only/.
  30. E. Aprile et al. (XENON), Phys. Rev. Lett. 123, 251801 (2019b), arXiv:1907.11485 [hep-ex] .
  31. P. Agnes et al. (DarkSide-50), Phys. Rev. D 107, 063001 (2023a), arXiv:2207.11966 [hep-ex] .
  32. R. Agnese et al. (SuperCDMS), Phys. Rev. Lett. 116, 071301 (2016), arXiv:1509.02448 [astro-ph.CO] .
  33. P. Agnes et al. (DarkSide), Phys. Rev. Lett. 130, 101001 (2023b), arXiv:2207.11967 [hep-ex] .
  34. C. Cheng et al. (PandaX-II), Phys. Rev. Lett. 126, 211803 (2021), arXiv:2101.07479 [hep-ex] .
  35. X. Cui et al. (PandaX-II), Phys. Rev. Lett. 128, 171801 (2022), arXiv:2112.08957 [hep-ex] .
  36. T. Åkesson et al., in Snowmass 2021 (2022) arXiv:2203.08192 [hep-ex] .
  37. H. M. Araújo et al., Astropart. Phys. 151, 102853 (2023), arXiv:2207.08284 [hep-ex] .
  38. J. Xu et al.,   (2023), arXiv:2307.12952 [hep-ex] .
  39. N. Aghanim et al. (Planck), Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.