Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Randomized Block Krylov Method for Tensor Train Approximation (2308.01480v2)

Published 3 Aug 2023 in math.NA and cs.NA

Abstract: Tensor train decomposition is a powerful tool for dealing with high-dimensional, large-scale tensor data, which is not suffering from the curse of dimensionality. To accelerate the calculation of the auxiliary unfolding matrix, some randomized algorithms have been proposed; however, they are not suitable for noisy data. The randomized block Krylov method is capable of dealing with heavy-tailed noisy data in the low-rank approximation of matrices. In this paper, we present a randomized algorithm for low-rank tensor train approximation of large-scale tensors based on randomized block Krylov subspace iteration and provide theoretical guarantees. Numerical experiments on synthetic and real-world tensor data demonstrate the effectiveness of the proposed algorithm.

Citations (3)

Summary

We haven't generated a summary for this paper yet.