Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BCDDO: Binary Child Drawing Development Optimization (2308.01270v3)

Published 19 Jul 2023 in cs.NE

Abstract: A lately created metaheuristic algorithm called Child Drawing Development Optimization (CDDO) has proven to be effective in a number of benchmark tests. A Binary Child Drawing Development Optimization (BCDDO) is suggested for choosing the wrapper features in this study. To achieve the best classification accuracy, a subset of crucial features is selected using the suggested BCDDO. The proposed feature selection technique's efficiency and effectiveness are assessed using the Harris Hawk, Grey Wolf, Salp, and Whale optimization algorithms. The suggested approach has significantly outperformed the previously discussed techniques in the area of feature selection to increase classification accuracy. Moderate COVID, breast cancer, and big COVID are the three datasets utilized in this study. The classification accuracy for each of the three datasets was (98.75, 98.83%, and 99.36) accordingly.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Abubakr S. Issa (1 paper)
  2. Yossra H. Ali (6 papers)
  3. Tarik A. Rashid (99 papers)

Summary

We haven't generated a summary for this paper yet.