Generating ultra compact boson stars with modified scalar potentials (2308.01254v3)
Abstract: The properties of selfinteracting boson stars with different scalar potentials going beyond the commonly used $\phi4$ ansatz are studied. The scalar potential is extended to different values of the exponent $n$ of the form $V \propto \phin$. Two stability mechanism for boson stars are introduced, the first being a mass term and the second one a vacuum term. We present analytic scale-invariant expressions for these two classes of equations of state. The resulting properties of the boson star configurations differ considerably from previous calculations. We find three different categories of mass-radius relation: the first category resembles the mass-radius curve of selfbound stars, the second one those of neutron stars and the third one is the well known constant radius case from the standard $\phi4$ potential. We demonstrate that the maximal compactness can reach extremely high values going to the limit of causality $C_\text{max} = 0.354$ asymptotically for $n\to\infty$. The maximal compactnesses exceed previously calculated values of $C_\text{max}=0.16$ for the standard $\phi4$-theory and $C_\text{max}=0.21$ for vector-like interactions and is in line with previous results for solitonic boson stars. Hence, boson stars even described by a simple modified scalar potential in the form of $V \propto \phin$ can be ultra compact black hole mimickers where the photon ring is located outside the radius of the star.
- S. Tulin and H.-B. Yu, Phys. Rept. 730, 1 (2018), arXiv:1705.02358 [hep-ph] .
- S. L. Liebling and C. Palenzuela, Living Rev. Rel. 26, 1 (2023), arXiv:1202.5809 [gr-qc] .
- J. A. Wheeler, Phys. Rev. 97, 511 (1955).
- G. H. Derrick, J. Math. Phys. 5, 1252 (1964).
- D. J. Kaup, Phys. Rev. 172, 1331 (1968).
- R. Ruffini and S. Bonazzola, Phys. Rev. 187, 1767 (1969).
- T. D. Lee and Y. Pang, Phys. Rev. D 35, 3678 (1987).
- T. D. Lee, Phys. Rev. D 35, 3637 (1987).
- R. Friedberg, T. D. Lee, and Y. Pang, Phys. Rev. D 35, 3640 (1987a).
- R. Friedberg, T. D. Lee, and Y. Pang, Phys. Rev. D 35, 3658 (1987b).
- M. Colpi, S. L. Shapiro, and I. Wasserman, Phys. Rev. Lett. 57, 2485 (1986).
- P. Agnihotri, J. Schaffner-Bielich, and I. N. Mishustin, Phys. Rev. D 79, 084033 (2009), arXiv:0812.2770 [astro-ph] .
- F. E. Schunck and D. F. Torres, Int. J. Mod. Phys. D 9, 601 (2000), arXiv:gr-qc/9911038 .
- C. Kouvaris and N. G. Nielsen, Phys. Rev. D 92, 063526 (2015), arXiv:1507.00959 [hep-ph] .
- M. Khlopov, B. A. Malomed, and I. B. Zeldovich, Mon. Not. Roy. Astron. Soc. 215, 575 (1985).
- B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 119, 161101 (2017), arXiv:1710.05832 [gr-qc] .
- J. Antoniadis et al., Science 340, 6131 (2013), arXiv:1304.6875 [astro-ph.HE] .
- E. Fonseca et al., Astrophys. J. Lett. 915, L12 (2021), arXiv:2104.00880 [astro-ph.HE] .
- T. E. Riley et al., Astrophys. J. Lett. 918, L27 (2021), arXiv:2105.06980 [astro-ph.HE] .
- R. Abbott et al. (LIGO Scientific, Virgo), Astrophys. J. Lett. 896, L44 (2020), arXiv:2006.12611 [astro-ph.HE] .
- A. Maselli, S. H. Völkel, and K. D. Kokkotas, Phys. Rev. D 96, 064045 (2017b), arXiv:1708.02217 [gr-qc] .
- M. Bezares, C. Palenzuela, and C. Bona, Phys. Rev. D 95, 124005 (2017), arXiv:1705.01071 [gr-qc] .
- T. Dietrich, S. Ossokine, and K. Clough, Class. Quant. Grav. 36, 025002 (2019), arXiv:1807.06959 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. X 9, 011001 (2019), arXiv:1805.11579 [gr-qc] .
- B. K. K. Lee, M.-c. Chu, and L.-M. Lin, Astrophys. J. 922, 242 (2021), arXiv:2110.05538 [astro-ph.HE] .
- S. Shakeri and D. R. Karkevandi, Bosonic Dark Matter in Light of the NICER Precise Mass-Radius Measurements (2022), arXiv:2210.17308 [astro-ph.HE] .
- K. Akiyama et al. (Event Horizon Telescope), Astrophys. J. Lett. 875, L1 (2019), arXiv:1906.11238 [astro-ph.GA] .
- K. Akiyama et al. (Event Horizon Telescope), Astrophys. J. Lett. 930, L12 (2022).
- M. Bošković and E. Barausse, JCAP 02 (02), 032, arXiv:2111.03870 [gr-qc] .
- J. Schaffner-Bielich, Compact Star Physics (Cambridge University Press, 2020).
- C.-M. Claudel, K. S. Virbhadra, and G. F. R. Ellis, J. Math. Phys. 42, 818 (2001), arXiv:gr-qc/0005050 .
- J. M. Lattimer, Ann. Rev. Nucl. Part. Sci. 62, 485 (2012), arXiv:1305.3510 [nucl-th] .
Collections
Sign up for free to add this paper to one or more collections.