Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 105 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 45 tok/s
GPT-5 High 34 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 218 tok/s Pro
2000 character limit reached

Generating ultra compact boson stars with modified scalar potentials (2308.01254v3)

Published 2 Aug 2023 in astro-ph.HE and gr-qc

Abstract: The properties of selfinteracting boson stars with different scalar potentials going beyond the commonly used $\phi4$ ansatz are studied. The scalar potential is extended to different values of the exponent $n$ of the form $V \propto \phin$. Two stability mechanism for boson stars are introduced, the first being a mass term and the second one a vacuum term. We present analytic scale-invariant expressions for these two classes of equations of state. The resulting properties of the boson star configurations differ considerably from previous calculations. We find three different categories of mass-radius relation: the first category resembles the mass-radius curve of selfbound stars, the second one those of neutron stars and the third one is the well known constant radius case from the standard $\phi4$ potential. We demonstrate that the maximal compactness can reach extremely high values going to the limit of causality $C_\text{max} = 0.354$ asymptotically for $n\to\infty$. The maximal compactnesses exceed previously calculated values of $C_\text{max}=0.16$ for the standard $\phi4$-theory and $C_\text{max}=0.21$ for vector-like interactions and is in line with previous results for solitonic boson stars. Hence, boson stars even described by a simple modified scalar potential in the form of $V \propto \phin$ can be ultra compact black hole mimickers where the photon ring is located outside the radius of the star.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. S. Tulin and H.-B. Yu, Phys. Rept. 730, 1 (2018), arXiv:1705.02358 [hep-ph] .
  2. S. L. Liebling and C. Palenzuela, Living Rev. Rel. 26, 1 (2023), arXiv:1202.5809 [gr-qc] .
  3. J. A. Wheeler, Phys. Rev. 97, 511 (1955).
  4. G. H. Derrick, J. Math. Phys. 5, 1252 (1964).
  5. D. J. Kaup, Phys. Rev. 172, 1331 (1968).
  6. R. Ruffini and S. Bonazzola, Phys. Rev. 187, 1767 (1969).
  7. T. D. Lee and Y. Pang, Phys. Rev. D 35, 3678 (1987).
  8. T. D. Lee, Phys. Rev. D 35, 3637 (1987).
  9. R. Friedberg, T. D. Lee, and Y. Pang, Phys. Rev. D 35, 3640 (1987a).
  10. R. Friedberg, T. D. Lee, and Y. Pang, Phys. Rev. D 35, 3658 (1987b).
  11. M. Colpi, S. L. Shapiro, and I. Wasserman, Phys. Rev. Lett. 57, 2485 (1986).
  12. P. Agnihotri, J. Schaffner-Bielich, and I. N. Mishustin, Phys. Rev. D 79, 084033 (2009), arXiv:0812.2770 [astro-ph] .
  13. F. E. Schunck and D. F. Torres, Int. J. Mod. Phys. D 9, 601 (2000), arXiv:gr-qc/9911038 .
  14. C. Kouvaris and N. G. Nielsen, Phys. Rev. D 92, 063526 (2015), arXiv:1507.00959 [hep-ph] .
  15. M. Khlopov, B. A. Malomed, and I. B. Zeldovich, Mon. Not. Roy. Astron. Soc. 215, 575 (1985).
  16. B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 119, 161101 (2017), arXiv:1710.05832 [gr-qc] .
  17. J. Antoniadis et al., Science 340, 6131 (2013), arXiv:1304.6875 [astro-ph.HE] .
  18. E. Fonseca et al., Astrophys. J. Lett. 915, L12 (2021), arXiv:2104.00880 [astro-ph.HE] .
  19. T. E. Riley et al., Astrophys. J. Lett. 918, L27 (2021), arXiv:2105.06980 [astro-ph.HE] .
  20. R. Abbott et al. (LIGO Scientific, Virgo), Astrophys. J. Lett. 896, L44 (2020), arXiv:2006.12611 [astro-ph.HE] .
  21. A. Maselli, S. H. Völkel, and K. D. Kokkotas, Phys. Rev. D 96, 064045 (2017b), arXiv:1708.02217 [gr-qc] .
  22. M. Bezares, C. Palenzuela, and C. Bona, Phys. Rev. D 95, 124005 (2017), arXiv:1705.01071 [gr-qc] .
  23. T. Dietrich, S. Ossokine, and K. Clough, Class. Quant. Grav. 36, 025002 (2019), arXiv:1807.06959 [gr-qc] .
  24. B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. X 9, 011001 (2019), arXiv:1805.11579 [gr-qc] .
  25. B. K. K. Lee, M.-c. Chu, and L.-M. Lin, Astrophys. J. 922, 242 (2021), arXiv:2110.05538 [astro-ph.HE] .
  26. S. Shakeri and D. R. Karkevandi, Bosonic Dark Matter in Light of the NICER Precise Mass-Radius Measurements (2022), arXiv:2210.17308 [astro-ph.HE] .
  27. K. Akiyama et al. (Event Horizon Telescope), Astrophys. J. Lett. 875, L1 (2019), arXiv:1906.11238 [astro-ph.GA] .
  28. K. Akiyama et al. (Event Horizon Telescope), Astrophys. J. Lett. 930, L12 (2022).
  29. M. Bošković and E. Barausse, JCAP 02 (02), 032, arXiv:2111.03870 [gr-qc] .
  30. J. Schaffner-Bielich, Compact Star Physics (Cambridge University Press, 2020).
  31. C.-M. Claudel, K. S. Virbhadra, and G. F. R. Ellis, J. Math. Phys. 42, 818 (2001), arXiv:gr-qc/0005050 .
  32. J. M. Lattimer, Ann. Rev. Nucl. Part. Sci. 62, 485 (2012), arXiv:1305.3510 [nucl-th] .
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com