A new adaptive local polynomial density estimation procedure on complicated domains (2308.01156v3)
Abstract: This paper presents a novel approach for pointwise estimation of multivariate density functions on known domains of arbitrary dimensions using nonparametric local polynomial estimators. Our method is highly flexible, as it applies to both simple domains, such as open connected sets, and more complicated domains that are not star-shaped around the point of estimation. This enables us to handle domains with sharp concavities, holes, and local pinches, such as polynomial sectors. Additionally, we introduce a data-driven selection rule based on the general ideas of Goldenshluger and Lepski. Our results demonstrate that the local polynomial estimators are minimax under a $L2$ risk across a wide range of H\"older-type functional classes. In the adaptive case, we provide oracle inequalities and explicitly determine the convergence rate of our statistical procedure. Simulations on polynomial sectors show that our oracle estimates outperform those of the most popular alternative method, found in the sparr package for the R software. Our statistical procedure is implemented in an online R package which is readily accessible.
- {barticle}[author] \bauthor\bsnmAitchison, \bfnmJ.\binitsJ. and \bauthor\bsnmLauder, \bfnmI. J.\binitsI. J. (\byear1985). \btitleKernel density estimation for compositional data. \bjournalJ. Roy. Statist. Soc. Ser. C \bvolume34 \bpages129–137. \bdoi10.2307/2347365 \endbibitem
- {barticle}[author] \bauthor\bsnmAmmous, \bfnmS.\binitsS., \bauthor\bsnmDedecker, \bfnmJ.\binitsJ. and \bauthor\bsnmDuval, \bfnmC.\binitsC. (\byear2023). \btitleAdaptive directional estimator of the density in ℝdsuperscriptℝ𝑑\mathbb{R}^{d}blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT for independent and mixing sequences. \bjournalPreprint \bpages1–28. \bnote\hrefhttps://arxiv.org/abs/2305.13572arXiv:2305.13572v1. \endbibitem
- {barticle}[author] \bauthor\bsnmBabu, \bfnmG. J.\binitsG. J. and \bauthor\bsnmChaubey, \bfnmY. P.\binitsY. P. (\byear2006). \btitleSmooth estimation of a distribution and density function on a hypercube using Bernstein polynomials for dependent random vectors. \bjournalStatist. Probab. Lett. \bvolume76 \bpages959–969. \bdoi10.1016/j.spl.2005.10.031 \bmrnumber2270097 \endbibitem
- {bmisc}[author] \bauthor\bsnmBarry, \bfnmR.\binitsR. (\byear2021). \btitlelatticeDensity: Density Estimation and Nonparametric Regression on Irregular Regions. \bnoteR package version 1.2.6, available online at \hrefhttps://cran.r-project.org/src/contrib/Archive/latticeDensityhttps://cran.r-project.org/src/contrib/Archive/latticeDensity [This link was accessed on 2024–05–15.]. \endbibitem
- {barticle}[author] \bauthor\bsnmBarry, \bfnmR. P.\binitsR. P. and \bauthor\bsnmMcIntyre, \bfnmJ.\binitsJ. (\byear2011). \btitleEstimating animal densities and home range in regions with irregular boundaries and holes: A lattice-based alternative to the kernel density estimator. \bjournalEcol. Model. \bvolume222 \bpages1666–1672. \bdoi10.1016/j.ecolmodel.2011.02.016 \endbibitem
- {barticle}[author] \bauthor\bsnmBarry, \bfnmR. P.\binitsR. P. and \bauthor\bsnmMcIntyre, \bfnmJ.\binitsJ. (\byear2020). \btitleLattice-based methods for regression and density estimation on complicated multidimensional regions. \bjournalEnviron. Ecol. Stat. \bvolume27 \bpages571–589. \bdoi10.1007/s10651-020-00459-z \endbibitem
- {barticle}[author] \bauthor\bsnmBertin, \bfnmK.\binitsK., \bauthor\bsnmEl Kolei, \bfnmS.\binitsS. and \bauthor\bsnmKlutchnikoff, \bfnmN.\binitsN. (\byear2019). \btitleAdaptive density estimation on bounded domains. \bjournalAnn. Inst. Henri Poincaré Probab. Stat. \bvolume55 \bpages1916–1947. \bdoi10.1214/18-AIHP938 \bmrnumber4029144 \endbibitem
- {barticle}[author] \bauthor\bsnmBertin, \bfnmK.\binitsK. and \bauthor\bsnmKlutchnikoff, \bfnmN.\binitsN. (\byear2014). \btitleAdaptive estimation of a density function using beta kernels. \bjournalESAIM Probab. Stat. \bvolume18 \bpages400–417. \bdoi10.1051/ps/2014010 \bmrnumber3333996 \endbibitem
- {barticle}[author] \bauthor\bsnmBertin, \bfnmK.\binitsK. and \bauthor\bsnmKlutchnikoff, \bfnmN.\binitsN. (\byear2017). \btitlePointwise adaptive estimation of the marginal density of a weakly dependent process. \bjournalJ. Statist. Plann. Inference \bvolume187 \bpages115–129. \bdoi10.1016/j.jspi.2017.03.003 \bmrnumber3638047 \endbibitem
- {barticle}[author] \bauthor\bsnmBotev, \bfnmZ. I.\binitsZ. I., \bauthor\bsnmGrotowski, \bfnmJ. F.\binitsJ. F. and \bauthor\bsnmKroese, \bfnmD. P.\binitsD. P. (\byear2010). \btitleKernel density estimation via diffusion. \bjournalAnn. Statist. \bvolume38 \bpages2916–2957. \bdoi10.1214/10-AOS799 \bmrnumber2722460 \endbibitem
- {barticle}[author] \bauthor\bsnmBrunel, \bfnmV. E.\binitsV. E. (\byear2018). \btitleMethods for estimation of convex sets. \bjournalStatist. Sci. \bvolume33 \bpages615–632. \bdoi10.1214/18-STS669 \bmrnumber3881211 \endbibitem
- {barticle}[author] \bauthor\bsnmCattaneo, \bfnmM. D.\binitsM. D., \bauthor\bsnmJansson, \bfnmM.\binitsM. and \bauthor\bsnmMa, \bfnmX.\binitsX. (\byear2020). \btitleSimple local polynomial density estimators. \bjournalJ. Amer. Statist. Assoc. \bvolume115 \bpages1449–1455. \bdoi10.1080/01621459.2019.1635480 \bmrnumber4143477 \endbibitem
- {barticle}[author] \bauthor\bsnmCattaneo, \bfnmM. D.\binitsM. D., \bauthor\bsnmJansson, \bfnmM.\binitsM. and \bauthor\bsnmMa, \bfnmX.\binitsX. (\byear2022). \btitlelpdensity: Local Polynomial Density Estimation and Inference. \bjournalJ. Stat. Softw. \bvolume101 \bpages1–25. \bdoi10.18637/jss.v101.i02 \endbibitem
- {barticle}[author] \bauthor\bsnmChen, \bfnmS. X.\binitsS. X. (\byear1999). \btitleBeta kernel estimators for density functions. \bjournalComput. Statist. Data Anal. \bvolume31 \bpages131–145. \bdoi10.1016/S0167-9473(99)00010-9 \bmrnumber1718494 \endbibitem
- {barticle}[author] \bauthor\bsnmCheng, \bfnmM. Y.\binitsM. Y., \bauthor\bsnmFan, \bfnmJ.\binitsJ. and \bauthor\bsnmMarron, \bfnmJ. S.\binitsJ. S. (\byear1997). \btitleOn automatic boundary corrections. \bjournalAnn. Statist. \bvolume25 \bpages1691–1708. \bdoi10.1214/aos/1031594737 \bmrnumber1463570 \endbibitem
- {barticle}[author] \bauthor\bsnmCline, \bfnmD. B. H.\binitsD. B. H. and \bauthor\bsnmHart, \bfnmJ. D.\binitsJ. D. (\byear1991). \btitleKernel estimation of densities with discontinuities or discontinuous derivatives. \bjournalStatistics \bvolume22 \bpages69–84. \bdoi10.1080/02331889108802286 \bmrnumber1097362 \endbibitem
- {barticle}[author] \bauthor\bsnmDavies, \bfnmT. M.\binitsT. M., \bauthor\bsnmMarshall, \bfnmJ. C.\binitsJ. C. and \bauthor\bsnmHazelton, \bfnmM. L.\binitsM. L. (\byear2018). \btitleTutorial on kernel estimation of continuous spatial and spatiotemporal relative risk. \bjournalStat. Med. \bvolume37 \bpages1191–1221. \bdoi10.1002/sim.7577 \bmrnumber3777968 \endbibitem
- {bmisc}[author] \bauthor\bsnmDavies, \bfnmT. M.\binitsT. M. and \bauthor\bsnmMarshall, \bfnmJ. C.\binitsJ. C. (\byear2023). \btitlesparr: Spatial and Spatiotemporal Relative Risk. \bnoteR package version 2.3-10, available online at \hrefhttps://cran.r-project.org/web/packages/sparr/index.htmlhttps://cran.r-project.org/web/packages/sparr/index.html [This link was accessed on 2024–05–15.]. \endbibitem
- {barticle}[author] \bauthor\bsnmFan, \bfnmJ.\binitsJ. and \bauthor\bsnmGijbels, \bfnmI.\binitsI. (\byear1992). \btitleVariable bandwidth and local linear regression smoothers. \bjournalAnn. Statist. \bvolume20 \bpages2008–2036. \bdoi10.1214/aos/1176348900 \bmrnumber1193323 \endbibitem
- {bbook}[author] \bauthor\bsnmFan, \bfnmJ.\binitsJ. and \bauthor\bsnmGijbels, \bfnmI.\binitsI. (\byear1996). \btitleLocal Polynomial Modelling and Its Applications. \bseriesMonographs on Statistics and Applied Probability \bvolume66. \bpublisherChapman & Hall, London. \bdoi10.1007/978-1-4899-3150-4 \bmrnumber1383587 \endbibitem
- {barticle}[author] \bauthor\bsnmGasser, \bfnmT.\binitsT., \bauthor\bsnmMüller, \bfnmH. G.\binitsH. G. and \bauthor\bsnmMammitzsch, \bfnmV.\binitsV. (\byear1985). \btitleKernels for nonparametric curve estimation. \bjournalJ. Roy. Statist. Soc. Ser. B \bvolume47 \bpages238–252. \bdoi10.1111/j.2517-6161.1985.tb01350.x \bmrnumber816088 \endbibitem
- {barticle}[author] \bauthor\bsnmGawronski, \bfnmW.\binitsW. and \bauthor\bsnmStadtmüller, \bfnmU.\binitsU. (\byear1981). \btitleSmoothing histograms by means of lattice and continuous distributions. \bjournalMetrika \bvolume28 \bpages155–164. \bdoi10.1007/BF01902889 \bmrnumber638651 \endbibitem
- {barticle}[author] \bauthor\bsnmGhosal, \bfnmS.\binitsS. (\byear2001). \btitleConvergence rates for density estimation with Bernstein polynomials. \bjournalAnn. Statist. \bvolume29 \bpages1264–1280. \bdoi10.1214/aos/1013203453 \bmrnumber1873330 \endbibitem
- {barticle}[author] \bauthor\bsnmGoldenshluger, \bfnmA.\binitsA. and \bauthor\bsnmLepski, \bfnmO.\binitsO. (\byear2008). \btitleUniversal pointwise selection rule in multivariate function estimation. \bjournalBernoulli \bvolume14 \bpages1150–1190. \bdoi10.3150/08-BEJ144 \bmrnumber2543590 \endbibitem
- {barticle}[author] \bauthor\bsnmGoldenshluger, \bfnmA.\binitsA. and \bauthor\bsnmLepski, \bfnmO.\binitsO. (\byear2009). \btitleStructural adaptation via 𝕃psubscript𝕃𝑝\mathbb{L}_{p}blackboard_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-norm oracle inequalities. \bjournalProbab. Theory Related Fields \bvolume143 \bpages41–71. \bdoi10.1007/s00440-007-0119-5 \bmrnumber2449122 \endbibitem
- {barticle}[author] \bauthor\bsnmGoldenshluger, \bfnmA.\binitsA. and \bauthor\bsnmLepski, \bfnmO.\binitsO. (\byear2011). \btitleBandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality. \bjournalAnn. Statist. \bvolume39 \bpages1608–1632. \bdoi10.1214/11-AOS883 \bmrnumber2850214 \endbibitem
- {barticle}[author] \bauthor\bsnmGoldenshluger, \bfnmA.\binitsA. and \bauthor\bsnmLepski, \bfnmO.\binitsO. (\byear2014). \btitleOn adaptive minimax density estimation on Rdsuperscript𝑅𝑑R^{d}italic_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT. \bjournalProbab. Theory Related Fields \bvolume159 \bpages479–543. \bdoi10.1007/s00440-013-0512-1 \bmrnumber3230001 \endbibitem
- {barticle}[author] \bauthor\bsnmGu, \bfnmC.\binitsC. (\byear1993). \btitleSmoothing spline density estimation: a dimensionless automatic algorithm. \bjournalJ. Amer. Statist. Assoc. \bvolume88 \bpages495–504. \bdoi10.1080/01621459.1993.10476300 \bmrnumber1224374 \endbibitem
- {barticle}[author] \bauthor\bsnmGu, \bfnmC.\binitsC. and \bauthor\bsnmQiu, \bfnmC.\binitsC. (\byear1993). \btitleSmoothing spline density estimation: theory. \bjournalAnn. Statist. \bvolume21 \bpages217–234. \bdoi10.1214/aos/1176349023 \bmrnumber1212174 \endbibitem
- {barticle}[author] \bauthor\bsnmGuillas, \bfnmS.\binitsS. and \bauthor\bsnmLai, \bfnmM. J.\binitsM. J. (\byear2010). \btitleBivariate splines for spatial functional regression models. \bjournalJ. Nonparametr. Stat. \bvolume22 \bpages477–497. \bdoi10.1080/10485250903323180 \bmrnumber2662608 \endbibitem
- {barticle}[author] \bauthor\bsnmJones, \bfnmM. C.\binitsM. C. (\byear1993). \btitleSimple boundary correction for kernel density estimation. \bjournalStat Comput . \bvolume3 \bpages135–146. \bdoi10.1007/BF00147776 \endbibitem
- {barticle}[author] \bauthor\bsnmJones, \bfnmM. C.\binitsM. C. and \bauthor\bsnmFoster, \bfnmP. J.\binitsP. J. (\byear1996). \btitleA simple nonnegative boundary correction method for kernel density estimation. \bjournalStatist. Sinica \bvolume6 \bpages1005–1013. \bnote\hrefhttps://www.jstor.org/stable/24306056https://www.jstor.org/stable/24306056. \bmrnumber1422417 \endbibitem
- {barticle}[author] \bauthor\bsnmKlemelä, \bfnmJ.\binitsJ. (\byear2009). \btitleMultivariate histograms with data-dependent partitions. \bjournalStatist. Sinica \bvolume19 \bpages159–176. \bnote\hrefhttps://www.jstor.org/stable/24308713https://www.jstor.org/stable/24308713. \bmrnumber2487883 \endbibitem
- {barticle}[author] \bauthor\bsnmKlutchnikoff, \bfnmN.\binitsN. (\byear2014). \btitlePointwise adaptive estimation of a multivariate function. \bjournalMath. Methods Statist. \bvolume23 \bpages132–150. \bdoi10.3103/S1066530714020045 \bmrnumber3224636 \endbibitem
- {bbook}[author] \bauthor\bsnmLai, \bfnmM. J.\binitsM. J. and \bauthor\bsnmSchumaker, \bfnmL. L.\binitsL. L. (\byear2007). \btitleSpline Functions on Triangulations. \bseriesEncyclopedia of Mathematics and its Applications \bvolume110. \bpublisherCambridge University Press, Cambridge. \bdoi10.1017/CBO9780511721588 \bmrnumber2355272 \endbibitem
- {barticle}[author] \bauthor\bsnmLai, \bfnmM. J.\binitsM. J. and \bauthor\bsnmWang, \bfnmL.\binitsL. (\byear2013). \btitleBivariate penalized splines for regression. \bjournalStatist. Sinica \bvolume23 \bpages1399–1417. \bdoi10.5705/ss.2010.278 \bmrnumber3114719 \endbibitem
- {barticle}[author] \bauthor\bsnmLepski, \bfnmO.\binitsO. (\byear2015). \btitleAdaptive estimation over anisotropic functional classes via oracle approach. \bjournalAnn. Statist. \bvolume43 \bpages1178–1242. \bdoi10.1214/14-AOS1306 \bmrnumber3346701 \endbibitem
- {barticle}[author] \bauthor\bsnmLepskii, \bfnmO. V.\binitsO. V. (\byear1991). \btitleOn a problem of adaptive estimation in Gaussian white noise. \bjournalTheory Probab. Appl. \bvolume35 \bpages454–466. \bdoi10.1137/1135065 \endbibitem
- {barticle}[author] \bauthor\bsnmLindgren, \bfnmF.\binitsF., \bauthor\bsnmRue, \bfnmH.\binitsH. and \bauthor\bsnmLindström, \bfnmJ.\binitsJ. (\byear2011). \btitleAn explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. \bjournalJ. R. Stat. Soc. Ser. B Stat. Methodol. \bvolume73 \bpages423–498. \bdoi10.1111/j.1467-9868.2011.00777.x \bmrnumber2853727 \endbibitem
- {barticle}[author] \bauthor\bsnmLiu, \bfnmY.\binitsY. and \bauthor\bsnmWu, \bfnmC.\binitsC. (\byear2019). \btitlePoint-wise estimation for anisotropic densities. \bjournalJ. Multivariate Anal. \bvolume171 \bpages112–125. \bmrnumber3892029 \endbibitem
- {barticle}[author] \bauthor\bsnmMarron, \bfnmJ. S.\binitsJ. S. and \bauthor\bsnmRuppert, \bfnmD.\binitsD. (\byear1994). \btitleTransformations to reduce boundary bias in kernel density estimation. \bjournalJ. Roy. Statist. Soc. Ser. B \bvolume56 \bpages653–671. \bdoi10.1111/j.2517-6161.1994.tb02006.x \bmrnumber1293239 \endbibitem
- {barticle}[author] \bauthor\bsnmMcIntyre, \bfnmJ.\binitsJ. and \bauthor\bsnmBarry, \bfnmR. P.\binitsR. P. (\byear2018). \btitleA lattice-based smoother for regions with irregular boundaries and holes. \bjournalJ. Comput. Graph. Statist. \bvolume27 \bpages360–367. \bdoi10.1080/10618600.2017.1375935 \bmrnumber3816271 \endbibitem
- {barticle}[author] \bauthor\bsnmMcSwiggan, \bfnmG.\binitsG., \bauthor\bsnmBaddeley, \bfnmA.\binitsA. and \bauthor\bsnmNair, \bfnmG.\binitsG. (\byear2017). \btitleKernel density estimation on a linear network. \bjournalScand. J. Stat. \bvolume44 \bpages324–345. \bdoi10.1111/sjos.12255 \bmrnumber3658517 \endbibitem
- {barticle}[author] \bauthor\bsnmMiller, \bfnmD. L.\binitsD. L. and \bauthor\bsnmWood, \bfnmS. N.\binitsS. N. (\byear2014). \btitleFinite area smoothing with generalized distance splines. \bjournalEnviron. Ecol. Stat. \bvolume21 \bpages715–731. \bdoi10.1007/s10651-014-0277-4 \bmrnumber3279587 \endbibitem
- {barticle}[author] \bauthor\bsnmMüller, \bfnmH. G.\binitsH. G. (\byear1991). \btitleSmooth optimum kernel estimators near endpoints. \bjournalBiometrika \bvolume78 \bpages521–530. \bdoi10.2307/2337021 \bmrnumber1130920 \endbibitem
- {barticle}[author] \bauthor\bsnmPetrone, \bfnmS.\binitsS. (\byear1999). \btitleBayesian density estimation using Bernstein polynomials. \bjournalCanad. J. Statist. \bvolume27 \bpages105–126. \bdoi10.2307/3315494 \bmrnumber1703623 \endbibitem
- {barticle}[author] \bauthor\bsnmPetrone, \bfnmS.\binitsS. and \bauthor\bsnmWasserman, \bfnmL.\binitsL. (\byear2002). \btitleConsistency of Bernstein polynomial posteriors. \bjournalJ. Roy. Statist. Soc. Ser. B \bvolume64 \bpages79–100. \bdoi10.1111/1467-9868.00326 \bmrnumber1881846 \endbibitem
- {barticle}[author] \bauthor\bsnmRamsay, \bfnmT.\binitsT. (\byear2002). \btitleSpline smoothing over difficult regions. \bjournalJ. R. Stat. Soc. Ser. B Stat. Methodol. \bvolume64 \bpages307–319. \bdoi10.1111/1467-9868.00339 \bmrnumber1904707 \endbibitem
- {barticle}[author] \bauthor\bsnmRebelles, \bfnmG.\binitsG. (\byear2015). \btitlePointwise adaptive estimation of a multivariate density under independence hypothesis. \bjournalBernoulli \bvolume21 \bpages1984–2023. \bdoi10.3150/14-BEJ633 \bmrnumber3378457 \endbibitem
- {bmisc}[author] \bauthor\bsnmRobinson, \bfnmD.\binitsD. (\byear2015). \btitleView package downloads over time with Shiny. \bnoteBlog post, available online at \hrefhttp://varianceexplained.org/r/cran-viewhttp://varianceexplained.org/r/cran-view [This link was accessed on 2024–05–15.]. \endbibitem
- {barticle}[author] \bauthor\bsnmRuppert, \bfnmD.\binitsD. and \bauthor\bsnmCline, \bfnmD. B. H.\binitsD. B. H. (\byear1994). \btitleBias reduction in kernel density estimation by smoothed empirical transformations. \bjournalAnn. Statist. \bvolume22 \bpages185–210. \bdoi10.1214/aos/1176325365 \bmrnumber1272080 \endbibitem
- {barticle}[author] \bauthor\bsnmSangalli, \bfnmL. M.\binitsL. M. (\byear2021). \btitleSpatial regression with partial differential equation regularisation. \bjournalInt. Stat. Rev. \bvolume89 \bpages505–531. \bdoi10.1111/insr.12444 \bmrnumber4411916 \endbibitem
- {barticle}[author] \bauthor\bsnmSangalli, \bfnmL. M.\binitsL. M., \bauthor\bsnmRamsay, \bfnmJ. O.\binitsJ. O. and \bauthor\bsnmRamsay, \bfnmT. O.\binitsT. O. (\byear2013). \btitleSpatial spline regression models. \bjournalJ. R. Stat. Soc. Ser. B. Stat. Methodol. \bvolume75 \bpages681–703. \bdoi10.1111/rssb.12009 \bmrnumber3091654 \endbibitem
- {barticle}[author] \bauthor\bsnmSchuster, \bfnmE. F.\binitsE. F. (\byear1985). \btitleIncorporating support constraints into nonparametric estimators of densities. \bjournalCommun. Statist. Theor. Meth. \bvolume14 \bpages1123–1136. \bdoi10.1080/03610928508828965 \bmrnumber797636 \endbibitem
- {barticle}[author] \bauthor\bsnmTsybakov, \bfnmA. B.\binitsA. B. (\byear1998). \btitlePointwise and sup-norm sharp adaptive estimation of functions on the Sobolev classes. \bjournalAnn. Statist. \bvolume26 \bpages2420–2469. \bdoi10.1214/aos/1024691478 \bmrnumber1700239 \endbibitem
- {bbook}[author] \bauthor\bsnmTsybakov, \bfnmA. B.\binitsA. B. (\byear2004). \btitleIntroduction à l’estimation non-paramétrique [french]. \bseriesMathématiques & Applications (Berlin) [Mathematics & Applications] \bvolume41. \bpublisherSpringer-Verlag, Berlin. \bmrnumber2013911 \endbibitem
- {bbook}[author] \bauthor\bsnmTsybakov, \bfnmA. B.\binitsA. B. (\byear2009). \btitleIntroduction to Nonparametric Estimation. \bseriesSpringer Series in Statistics. \bpublisherSpringer, New York. \bdoi10.1007/b13794 \bmrnumber2724359 \endbibitem
- {barticle}[author] \bauthor\bsnmWang, \bfnmH.\binitsH. and \bauthor\bsnmRanalli, \bfnmM. G.\binitsM. G. (\byear2007). \btitleLow-rank smoothing splines on complicated domains. \bjournalBiometrics \bvolume63 \bpages209–217. \bdoi10.1111/j.1541-0420.2006.00674.x \bmrnumber2345591 \endbibitem
- {barticle}[author] \bauthor\bsnmWood, \bfnmS. N.\binitsS. N., \bauthor\bsnmBravington, \bfnmM. V.\binitsM. V. and \bauthor\bsnmHedley, \bfnmS. L.\binitsS. L. (\byear2008). \btitleSoap film smoothing. \bjournalJ. R. Stat. Soc. Ser. B Stat. Methodol. \bvolume70 \bpages931–955. \bdoi10.1111/j.1467-9868.2008.00665.x \bmrnumber2530324 \endbibitem
- {barticle}[author] \bauthor\bsnmXu, \bfnmM.\binitsM. and \bauthor\bsnmSamworth, \bfnmR. J.\binitsR. J. (\byear2021). \btitleHigh-dimensional nonparametric density estimation via symmetry and shape constraints. \bjournalAnn. Statist. \bvolume49 \bpages650–672. \bdoi10.1214/20-aos1972 \bmrnumber4255102 \endbibitem
- {barticle}[author] \bauthor\bsnmZhang, \bfnmS.\binitsS. and \bauthor\bsnmKarunamuni, \bfnmR. J.\binitsR. J. (\byear1998). \btitleOn kernel density estimation near endpoints. \bjournalJ. Statist. Plann. Inference \bvolume70 \bpages301–316. \bdoi10.1016/S0378-3758(97)00187-0 \bmrnumber1649872 \endbibitem
- {barticle}[author] \bauthor\bsnmZhang, \bfnmS.\binitsS., \bauthor\bsnmKarunamuni, \bfnmR. J.\binitsR. J. and \bauthor\bsnmJones, \bfnmM. C.\binitsM. C. (\byear1999). \btitleAn improved estimator of the density function at the boundary. \bjournalJ. Amer. Statist. Assoc. \bvolume94 \bpages1231–1241. \bdoi10.2307/2669937 \bmrnumber1731485 \endbibitem
- {barticle}[author] \bauthor\bsnmZhang, \bfnmS.\binitsS. and \bauthor\bsnmKarunamuni, \bfnmR. J.\binitsR. J. (\byear2000). \btitleOn nonparametric density estimation at the boundary. \bjournalJ. Nonparametr. Statist. \bvolume12 \bpages197–221. \bdoi10.1080/10485250008832805 \bmrnumber1752313 \endbibitem
- {barticle}[author] \bauthor\bsnmZhou, \bfnmL.\binitsL. and \bauthor\bsnmPan, \bfnmH.\binitsH. (\byear2014). \btitleSmoothing noisy data for irregular regions using penalized bivariate splines on triangulations. \bjournalComput. Statist. \bvolume29 \bpages263–281. \bdoi10.1007/s00180-013-0448-z \bmrnumber3260122 \endbibitem