Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Skolem Meets Bateman-Horn (2308.01152v2)

Published 2 Aug 2023 in cs.DM and math.NT

Abstract: The Skolem Problem asks to determine whether a given integer linear recurrence sequence has a zero term. This problem arises across a wide range of topics in computer science, including loop termination, formal languages, automata theory, and control theory, amongst many others. Decidability of the Skolem Problem is notoriously open. The state of the art is a decision procedure for recurrences of order at most 4: an advance achieved some 40 years ago, based on Baker's theorem on linear forms in logarithms of algebraic numbers. A new approach to the Skolem Problem was recently initiated via the notion of a Universal Skolem Set: a set $S$ of positive integers such that it is decidable whether a given non-degenerate linear recurrence sequence has a zero in $S$. Clearly, proving decidability of the Skolem Problem is equivalent to showing that $\mathbb{N}$ itself is a Universal Skolem Set. The main contribution of the present paper is to construct a Universal Skolem Set that has lower density at least $0.29$. We show moreover that this set has density one subject to the Bateman-Horn conjecture. The latter is a central unifying hypothesis concerning the frequency of prime numbers among the values of systems of polynomials.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. Approximate verification of the symbolic dynamics of Markov chains. J. ACM, 62(1):2:1–2:34, 2015.
  2. F. Amoroso and E. Viada. Small points on subvarieties of a torus. Duke Mathematical Journal, 150(3), 2009.
  3. The Bateman–Horn conjecture: Heuristic, history, and applications. Expositiones Mathematicae, 38(4):430–479, 2020.
  4. Stephan Baier. On the bateman–horn conjecture. Journal of Number Theory - J NUMBER THEOR, 96, 10 2002.
  5. E. Bombieri and W. Gubler. Heights in Diophantine Geometry. Number 4 in New Mathematical Monographs. Cambridge University Press, Cambridge, 2006.
  6. A heuristic asymptotic formula concerning the distribution of prime numbers. Mathematics of Computation, 16:363–367, 1962.
  7. Y Bilu. A note on universal hilbert sets. Journal für die reine und angewandte Mathematik, 479:195–204, 1996.
  8. Universal equivalence and majority of probabilistic programs over finite fields. In LICS’20: 35th Annual ACM/IEEE Symposium on Logic in Computer Science, pages 155–166. ACM, 2020.
  9. Skolem meets schanuel. In 47th International Symposium on Mathematical Foundations of Computer Science, MFCS, volume 241 of LIPIcs, pages 20:1–20:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
  10. On the mortality problem: From multiplicative matrix equations to linear recurrence sequences and beyond. Inf. Comput., 281:104736, 2021.
  11. J. Berstel and C. Reutenauer. Noncommutative Rational Series with Applications. Cambridge University Press, 2010.
  12. V. Blondel and J. Tsitsiklis. A survey of computational complexity results in systems and control. Automatica, 36(9):1249–1274, 2000.
  13. Linear equations in variables which lie in a multiplicative group. Annals of Mathematics, 155(3):807–836, 2002.
  14. H. Halberstam and H.-E. Richert. Sieve methods. LMS Monographs. 1974.
  15. S. Lang. La conjecture de Bateman-Horn. Gaz. Math, 67:82–84, 1996.
  16. C. Lech. A note on recurring series. Ark. Mat., 2, 1953.
  17. Universal Skolem Sets. In 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS, pages 1–6. IEEE, 2021.
  18. A Universal Skolem Set of Positive Lower Density. In 47th International Symposium on Mathematical Foundations of Computer Science, MFCS, volume 241 of LIPIcs, pages 73:1–73:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
  19. K. Mahler. Eine arithmetische Eigenschaft der Taylor Koeffizienten rationaler Funktionen. Proc. Akad. Wet. Amsterdam, 38, 1935.
  20. The distance between terms of an algebraic recurrence sequence. J. für die reine und angewandte Math., 349, 1984.
  21. J. Ouaknine and J. Worrell. On linear recurrence sequences and loop termination. ACM SIGLOG News, 2(2):4–13, 2015.
  22. G. Rozenberg and A. Salomaa. Cornerstones of Undecidability. Prentice Hall, 1994.
  23. T. Skolem. Ein Verfahren zur Behandlung gewisser exponentialer Gleichungen. In Comptes rendus du congrès des mathématiciens scandinaves, 1934.
  24. A. Salomaa and M. Soittola. Automata-theoretic aspects of formal power series. In Texts and Monographs in Computer Science, 1978.
  25. The number of solutions of polynomial-exponential equations. Compositio Mathematica, 120:193–225, 01 2000.
  26. T. Tao. Structure and randomness: pages from year one of a mathematical blog. American Mathematical Society, 2008.
  27. G. Tenenbaum. Introduction to Analytic and Probabilistic Number Theory. Number 46 in Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1995.
  28. N. K. Vereshchagin. The problem of appearance of a zero in a linear recurrence sequence (in Russian). Mat. Zametki, 38(2), 1985.
  29. P. Voutier. An effective lower bound for the height of algebraic numbers. Acta Arith., 74(1):81–95, 1996.
Citations (4)

Summary

We haven't generated a summary for this paper yet.