Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Empirical Evaluation of AriDeM using Matrix Multiplication (2308.00661v1)

Published 16 Jul 2023 in cs.AR

Abstract: For a long time, the Von Neumann has been a successful model of computation for sequential computing .Many models including the dataflow model have been unsuccessfully developed to emulate the same results in parallel computing. It is widely accepted that high performance computation is better-achieved using parallel architectures and is seen as the basis for future computational architectures with the ever-increasing need for high performance computation. We describe a new model of parallel computation known as the Arithmetic Deduction Model (AriDem) which has some similarities with the Von Neumann. A theoretical evaluation conducted on this model in comparison with the predominant von Neumann model indicated AriDeM to be more efficient in resources utilization. In this paper, we conduct an empirical evaluation of the model and the results reflect the output of the theoretical evaluation.

Citations (1)

Summary

We haven't generated a summary for this paper yet.