Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pretrained deep models outperform GBDTs in Learning-To-Rank under label scarcity (2308.00177v4)

Published 31 Jul 2023 in cs.LG and cs.AI

Abstract: On tabular data, a significant body of literature has shown that current deep learning (DL) models perform at best similarly to Gradient Boosted Decision Trees (GBDTs), while significantly underperforming them on outlier data. However, these works often study idealized problem settings which may fail to capture complexities of real-world scenarios. We identify a natural tabular data setting where DL models can outperform GBDTs: tabular Learning-to-Rank (LTR) under label scarcity. Tabular LTR applications, including search and recommendation, often have an abundance of unlabeled data, and scarce labeled data. We show that DL rankers can utilize unsupervised pretraining to exploit this unlabeled data. In extensive experiments over both public and proprietary datasets, we show that pretrained DL rankers consistently outperform GBDT rankers on ranking metrics -- sometimes by as much as 38% -- both overall and on outliers.

Citations (1)

Summary

We haven't generated a summary for this paper yet.