Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fluid-poroviscoelastic structure interaction problem with nonlinear geometric coupling (2307.16158v2)

Published 30 Jul 2023 in math.AP

Abstract: We investigate weak solutions to a fluid-structure interaction (FSI) problem between the flow of an incompressible, viscous fluid modeled by the Navier-Stokes equations, and a poroviscoelastic medium modeled by the Biot equations. These systems are coupled nonlinearly across an interface with mass and elastic energy, modeled by a reticular plate equation, which is transparent to fluid flow. We provide a constructive proof of the existence of a weak solution to a regularized problem. Next, a weak-classical consistency result is obtained, showing that the weak solution to the regularized problem converges, as the regularization parameter approaches zero, to a {{classical}} solution to the original problem, when such a classicalsolution exists. While the assumptions in the first step only require the Biot medium to be poroelastic, the second step requires additional regularity, namely, that the Biot medium is poroviscoelastic. This is the first weak solution existence result for an FSI problem with nonlinear coupling involving a Biot model for poro(visco)elastic media.

Citations (1)

Summary

We haven't generated a summary for this paper yet.