Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Empirical Study of Large-Scale Data-Driven Full Waveform Inversion (2307.15388v2)

Published 28 Jul 2023 in cs.LG, eess.SP, and physics.geo-ph

Abstract: This paper investigates the impact of big data on deep learning models to help solve the full waveform inversion (FWI) problem. While it is well known that big data can boost the performance of deep learning models in many tasks, its effectiveness has not been validated for FWI. To address this gap, we present an empirical study that investigates how deep learning models in FWI behave when trained on OpenFWI, a collection of large-scale, multi-structural, synthetic datasets published recently. In particular, we train and evaluate the FWI models on a combination of 10 2D subsets in OpenFWI that contain 470K pairs of seismic data and velocity maps in total. Our experiments demonstrate that training on the combined dataset yields an average improvement of 13.03% in MAE, 7.19% in MSE and 1.87% in SSIM compared to each split dataset, and an average improvement of 28.60%, 21.55% and 8.22% in the leave-one-out generalization test. We further demonstrate that model capacity needs to scale in accordance with data size for optimal improvement, where our largest model yields an average improvement of 20.06%, 13.39% and 0.72% compared to the smallest one.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com