Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learnable wavelet neural networks for cosmological inference (2307.14362v1)

Published 24 Jul 2023 in astro-ph.IM, astro-ph.CO, and cs.LG

Abstract: Convolutional neural networks (CNNs) have been shown to both extract more information than the traditional two-point statistics from cosmological fields, and marginalise over astrophysical effects extremely well. However, CNNs require large amounts of training data, which is potentially problematic in the domain of expensive cosmological simulations, and it is difficult to interpret the network. In this work we apply the learnable scattering transform, a kind of convolutional neural network that uses trainable wavelets as filters, to the problem of cosmological inference and marginalisation over astrophysical effects. We present two models based on the scattering transform, one constructed for performance, and one constructed for interpretability, and perform a comparison with a CNN. We find that scattering architectures are able to outperform a CNN, significantly in the case of small training data samples. Additionally we present a lightweight scattering network that is highly interpretable.

Citations (3)

Summary

We haven't generated a summary for this paper yet.