Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Regret Optimal Control (2307.14297v4)

Published 26 Jul 2023 in math.OC, cs.SY, and eess.SY

Abstract: This paper presents a synthesis method for robust, regret optimal control. The plant is modeled in discrete-time by an uncertain linear time-invariant (LTI) system. An optimal non-causal controller is constructed using the nominal plant model and given full knowledge of the disturbance. Robust regret is defined relative to the performance of this optimal non-causal control. It is shown that a controller achieves robust regret if and only if it satisfies a robust $H_\infty$ performance condition. DK-iteration can be used to synthesize a controller that satisfies this condition and hence achieve a given level of robust regret. The approach is demonstrated three examples: (i) a simple single-input, single-output classical design, (ii) a longitudinal control for a simplified model for a Boeing 747 model, and (iii) an active suspension for a quarter car model. All examples compare the robust regret optimal against regret optimal controllers designed without uncertainty.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. G. Goel and B. Hassibi, “Regret-optimal control in dynamic environments,” arXiv preprint arXiv:2010.10473, 2020.
  2. G. Goel and A. Wierman, “An online algorithm for smoothed regression and LQR control,” in The 22nd International Conference on Artificial Intelligence and Statistics.   PMLR, 2019, pp. 2504–2513.
  3. G. Goel and B. Hassibi, “The power of linear controllers in LQR control,” in IEEE Conference on Decision and Control.   IEEE, 2022, pp. 6652–6657.
  4. ——, “Regret-optimal measurement-feedback control,” in Learning for Dynamics and Control.   PMLR, 2021, pp. 1270–1280.
  5. O. Sabag, G. Goel, S. Lale, and B. Hassibi, “Regret-optimal controller for the full-information problem,” in American Control Conference.   IEEE, 2021, pp. 4777–4782.
  6. ——, “Regret-optimal full-information control,” arXiv preprint arXiv:2105.01244, 2021.
  7. G. Goel and B. Hassibi, “Competitive control,” IEEE Transactions on Automatic Control, 2022.
  8. O. Sabag, S. Lale, and B. Hassibi, “Optimal competitive-ratio control,” arXiv preprint arXiv:2206.01782, 2022.
  9. A. Didier, J. Sieber, and M. N. Zeilinger, “A system level approach to regret optimal control,” IEEE Control Systems Letters, vol. 6, pp. 2792–2797, 2022.
  10. A. Karapetyan, A. Iannelli, and J. Lygeros, “On the regret of h∞subscriptℎh_{\infty}italic_h start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT control,” in IEEE Conference on Decision and Control.   IEEE, 2022, pp. 6181–6186.
  11. N. Agarwal, B. Bullins, E. Hazan, S. Kakade, and K. Singh, “Online control with adversarial disturbances,” in International Conference on Machine Learning.   PMLR, 2019, pp. 111–119.
  12. E. Hazan, “Introduction to online convex optimization,” Foundations and Trends® in Optimization, vol. 2, no. 3-4, pp. 157–325, 2016.
  13. J. Doyle, K. Glover, P. Khargonekar, and B. Francis, “State-space solutions to standard H2subscript𝐻2H_{2}italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and H∞subscript𝐻H_{\infty}italic_H start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT control problems,” IEEE Transactions on Automatic Control, vol. 34, no. 8, pp. 831–847, 1989.
  14. J. Doyle, “Structured uncertainty in control system design,” in Proceedings of the IEEE Conference on Decision and Control, 1985, pp. 260–265.
  15. J. Doyle, K. Lenz, and A. Packard, “Design examples using μ𝜇\muitalic_μ-synthesis: Space shuttle lateral axis FCS during reentry,” in Modelling, Robustness and Sensitivity Reduction in Control Systems.   Springer, 1987.
  16. G. Balas and J. Doyle, “Control of lightly damped, flexible modes in the controller crossover region,” Journal of Guidance, Control, and Dynamics, vol. 17, no. 2, pp. 370–377, 1994.
  17. R. Lind, G. Balas, and A. Packard, “Evaluating DK iteration for control design,” in Proceedings of American Control Conference, vol. 3.   IEEE, 1994, pp. 2792–2797.
  18. A. Packard, J. Doyle, and G. Balas, “Linear, multivariable robust control with a μ𝜇\muitalic_μ perspective,” ASME Journal of Dynamic Systems, Measurement, and Control, vol. 115, no. 2B, pp. 426–438, 1993.
  19. A. Packard, “Gain scheduling via linear fractional transformations,” Systems & control letters, vol. 22, no. 2, pp. 79–92, 1994.
  20. P. A. Iglesias and K. Glover, “State-space approach to discrete-time, H∞subscript𝐻H_{\infty}italic_H start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT control,” International Journal of Control, vol. 54, no. 5, pp. 1031–1073, 1991.
  21. D. Limebeer, M. Green, and D. Walker, “Discrete-time H∞subscript𝐻H_{\infty}italic_H start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT control,” in Proceedings of the 28th IEEE Conference on Decision and Control.   IEEE, 1989, pp. 392–396.
  22. P. Gahinet and P. Apkarian, “A linear matrix inequality approach to H∞subscript𝐻H_{\infty}italic_H start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT control,” International journal of robust and nonlinear control, vol. 4, no. 4, pp. 421–448, 1994.
  23. J. Doyle, K. Glover, P. Khargonekar, and B. Francis, “State-space solutions to standard h2subscriptℎ2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and h∞subscriptℎh_{\infty}italic_h start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT control problems,” IEEE Transactions on Automatic Control, vol. 34, no. 8, pp. 831–847, 1989.
  24. G. Goel and B. Hassibi, “Regret-optimal estimation and control,” arXiv preprint arXiv:2106.12097, 2021.
  25. J. Doyle, “Analysis of feedback systems with structured uncertainties,” IEE Proceedings D - Control Theory and Applications, vol. 129, no. 6, pp. 242 – 250, 1982.
  26. A. Packard and J. Doyle, “The complex structured singular value,” Automatica, vol. 29, no. 1, pp. 71–109, 1993.
  27. Matlab, “Demo: Robust control of active suspension,” 2022.
  28. B. Douglas, “(Matlab Tech Talks) robust control design: H∞subscript𝐻H_{\infty}italic_H start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT to μ𝜇\muitalic_μ synthesis,” https://www.mathworks.com/videos/robust-control-part-5-h-infinity-and-mu-synthesis-1586760454181.html, 2020.
  29. T. Katayama, “A simple state-space approach to spectral factorization for discrete-time system,” Control-Theory and Advanced Technology, vol. 8, no. 3, pp. 647–657, 1992.
  30. R. Redheffer, “Inequalities for a matrix riccati equation,” Journal of Mathematics and Mechanics, pp. 349–367, 1959.
  31. G. Zames, “On the input-output stability of time-varying nonlinear feedback systems–part ii: Conditions involving circles in the frequency plane and sector nonlinearities,” IEEE transactions on automatic control, vol. 11, no. 3, pp. 465–476, 1966.
  32. S. Boyd and C. Desoer, “Subharmonic functions and performance bounds on linear time-invariant feedback systems,” IMA Journal of Mathematical control and Information, vol. 2, no. 2, pp. 153–170, 1985.
Citations (2)

Summary

We haven't generated a summary for this paper yet.