Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On colorings of hypergraphs embeddable in $\mathbb{R}^d$ (2307.14195v2)

Published 26 Jul 2023 in math.CO

Abstract: The (weak) chromatic number of a hypergraph $H$, denoted by $\chi(H)$, is the smallest number of colors required to color the vertices of $H$ so that no hyperedge of $H$ is monochromatic. For every $2\le k\le d+1$, denote by $\chi_L(k,d)$ (resp. $\chi_{PL}(k,d)$) the supremum $\sup_H \chi(H)$ where $H$ runs over all finite $k$-uniform hypergraphs such that $H$ forms the collection of maximal faces of a simplicial complex that is linearly (resp. PL) embeddable in $\mathbb{R}d$. Following the program by Heise, Panagiotou, Pikhurko and Taraz, we improve their results as follows: For $d \geq 3$, we show that A. $\chi_L(k,d)=\infty$ for all $2\le k\le d$, B. $\chi_{PL}(d+1,d)=\infty$ and C. $\chi_L(d+1,d)\ge 3$ for all odd $d\ge 3$. As an application, we extend the results by Lutz and M\o ller on the weak chromatic number of the $s$-dimensional faces in the triangulations of a fixed triangulable $d$-manifold $M$: D. $\chi_s(M)=\infty$ for $1\leq s \leq d$.

Summary

We haven't generated a summary for this paper yet.