Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Kernel Design for Regularized Non-Causal System Identification (2307.13999v1)

Published 26 Jul 2023 in eess.SY and cs.SY

Abstract: Through one decade's development, the kernel-based regularization method (KRM) has become a complement to the classical maximum likelihood/prediction error method and an emerging new system identification paradigm. One recent example is its application in the non-causal system identification, and the key issue lies in the design and analysis of kernels for non-causal systems. In this paper, we develop systematic ways to deal with this issue. In particular, we first introduce the guidelines for kernel design and then extend the system theoretic framework to design the so-called non-causal simulation-induced (NCSI) kernel, and we also study its structural properties, including stability and semiseparability. Finally, we consider some special cases of the NCSI kernel and show their advantage over the existing kernels through numerical simulations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.