Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Some remarks on two-periodic modules over local rings (2307.12752v2)

Published 24 Jul 2023 in math.AC

Abstract: In this note, some properties of finitely generated two-periodic modules over commutative Noetherian local rings have been studied. We show that under certain assumptions on a pair of modules $\left(M,N \right)$ with $M$ two-periodic, the natural map $M \otimes_R N \to Hom_R(M*,N)$ is an isomorphism. As a consequence, we have that the Auslander's depth formula holds for such a pair. Celikbas et al. recently showed the Huneke-Wiegand conjecture holds over one-dimensional domain for two-periodic modules. We generalize their result to the case of two-periodic module with rank over any one-dimensional local ring. More generally, under certain assumptions on the modules, we show that a pair of modules over an one-dimensional local ring has non-zero torsion if and only if they are Tor-independent.

Summary

We haven't generated a summary for this paper yet.