Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-driven dual-loop control for platooning mixed human-driven and automated vehicles (2307.11476v1)

Published 21 Jul 2023 in eess.SY, cs.RO, cs.SY, and math.OC

Abstract: This paper considers controlling automated vehicles (AVs) to form a platoon with human-driven vehicles (HVs) under consideration of unknown HV model parameters and propulsion time constants. The proposed design is a data-driven dual-loop control strategy for the ego AVs, where the inner loop controller ensures platoon stability and the outer loop controller keeps a safe inter-vehicular spacing under control input limits. The inner loop controller is a constant-gain state feedback controller solved from a semidefinite program (SDP) using the online collected data of platooning errors. The outer loop is a model predictive control (MPC) that embeds a data-driven internal model to predict the future platooning error evolution. The proposed design is evaluated on a mixed platoon with a representative aggressive reference velocity profile, the SFTP-US06 Drive Cycle. The results confirm efficacy of the design and its advantages over the existing single loop data-driven MPC in terms of platoon stability and computational cost.

Citations (1)

Summary

We haven't generated a summary for this paper yet.