Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust stabilization of $2 \times 2$ first-order hyperbolic PDEs with uncertain input delay (2307.11424v1)

Published 21 Jul 2023 in math.OC, cs.SY, eess.SY, math.AP, physics.class-ph, and physics.flu-dyn

Abstract: A backstepping-based compensator design is developed for a system of $2\times2$ first-order linear hyperbolic partial differential equations (PDE) in the presence of an uncertain long input delay at boundary. We introduce a transport PDE to represent the delayed input, which leads to three coupled first-order hyperbolic PDEs. A novel backstepping transformation, composed of two Volterra transformations and an affine Volterra transformation, is introduced for the predictive control design. The resulting kernel equations from the affine Volterra transformation are two coupled first-order PDEs and each with two boundary conditions, which brings challenges to the well-posedness analysis. We solve the challenge by using the method of characteristics and the successive approximation. To analyze the sensitivity of the closed-loop system to uncertain input delay, we introduce a neutral system which captures the control effect resulted from the delay uncertainty. It is proved that the proposed control is robust to small delay variations. Numerical examples illustrate the performance of the proposed compensator.

Summary

We haven't generated a summary for this paper yet.