Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse plus low-rank identification for dynamical latent-variable graphical AR models (2307.11320v1)

Published 21 Jul 2023 in stat.ME, cs.SY, and eess.SY

Abstract: This paper focuses on the identification of graphical autoregressive models with dynamical latent variables. The dynamical structure of latent variables is described by a matrix polynomial transfer function. Taking account of the sparse interactions between the observed variables and the low-rank property of the latent-variable model, a new sparse plus low-rank optimization problem is formulated to identify the graphical auto-regressive part, which is then handled using the trace approximation and reweighted nuclear norm minimization. Afterwards, the dynamics of latent variables are recovered from low-rank spectral decomposition using the trace norm convex programming method. Simulation examples are used to illustrate the effectiveness of the proposed approach.

Citations (6)

Summary

We haven't generated a summary for this paper yet.