Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Small But Unwieldy: A Lower Bound on Adjacency Labels for Small Classes (2307.11225v3)

Published 20 Jul 2023 in math.CO, cs.DM, and cs.DS

Abstract: We show that for any natural number $s$, there is a constant $\gamma$ and a subgraph-closed class having, for any natural $n$, at most $\gamman$ graphs on $n$ vertices up to isomorphism, but no adjacency labeling scheme with labels of size at most $s \log n$. In other words, for every $s$, there is a small (even tiny) monotone class without universal graphs of size $ns$. Prior to this result, it was not excluded that every small class has an almost linear universal graph, or equivalently a labeling scheme with labels of size $(1+o(1))\log n$. The existence of such a labeling scheme, a scaled-down version of the recently disproved Implicit Graph Conjecture, was repeatedly raised [Gavoille and Labourel, ESA '07; Dujmovi\'{c} et al., JACM '21; Bonamy et al., SIDMA '22; Bonnet et al., Comb. Theory '22]. Furthermore, our small monotone classes have unbounded twin-width, thus simultaneously disprove the already-refuted Small conjecture; but this time with a self-contained proof, not relying on elaborate group-theoretic constructions.

Summary

We haven't generated a summary for this paper yet.