Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dense Sample Deep Learning (2307.10991v2)

Published 20 Jul 2023 in cs.AI, q-bio.NC, and stat.ML

Abstract: Deep Learning (DL) , a variant of the neural network algorithms originally proposed in the 1980s, has made surprising progress in AI, ranging from language translation, protein folding, autonomous cars, and more recently human-like LLMs (CHATbots), all that seemed intractable until very recently. Despite the growing use of Deep Learning (DL) networks, little is actually understood about the learning mechanisms and representations that makes these networks effective across such a diverse range of applications. Part of the answer must be the huge scale of the architecture and of course the large scale of the data, since not much has changed since 1987. But the nature of deep learned representations remain largely unknown. Unfortunately training sets with millions or billions of tokens have unknown combinatorics and Networks with millions or billions of hidden units cannot easily be visualized and their mechanisms cannot be easily revealed. In this paper, we explore these questions with a large (1.24M weights; VGG) DL in a novel high density sample task (5 unique tokens with at minimum 500 exemplars per token) which allows us to more carefully follow the emergence of category structure and feature construction. We use various visualization methods for following the emergence of the classification and the development of the coupling of feature detectors and structures that provide a type of graphical bootstrapping, From these results we harvest some basic observations of the learning dynamics of DL and propose a new theory of complex feature construction based on our results.

Summary

We haven't generated a summary for this paper yet.