Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TwinLiteNet: An Efficient and Lightweight Model for Driveable Area and Lane Segmentation in Self-Driving Cars (2307.10705v5)

Published 20 Jul 2023 in cs.CV and cs.LG

Abstract: Semantic segmentation is a common task in autonomous driving to understand the surrounding environment. Driveable Area Segmentation and Lane Detection are particularly important for safe and efficient navigation on the road. However, original semantic segmentation models are computationally expensive and require high-end hardware, which is not feasible for embedded systems in autonomous vehicles. This paper proposes a lightweight model for the driveable area and lane line segmentation. TwinLiteNet is designed cheaply but achieves accurate and efficient segmentation results. We evaluate TwinLiteNet on the BDD100K dataset and compare it with modern models. Experimental results show that our TwinLiteNet performs similarly to existing approaches, requiring significantly fewer computational resources. Specifically, TwinLiteNet achieves a mIoU score of 91.3% for the Drivable Area task and 31.08% IoU for the Lane Detection task with only 0.4 million parameters and achieves 415 FPS on GPU RTX A5000. Furthermore, TwinLiteNet can run in real-time on embedded devices with limited computing power, especially since it achieves 60FPS on Jetson Xavier NX, making it an ideal solution for self-driving vehicles. Code is available: url{https://github.com/chequanghuy/TwinLiteNet}.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. M.-Q. Pham, H.-P. Ly, H. C. Quang, T. Nguyen-Van, D. T. Tung, and M. Le-Hoang, “Transform an electric golf cart into an autonomous vehicle,” in 2022 International Conference on Multimedia Analysis and Pattern Recognition (MAPR), 2022, pp. 1–6.
  2. Autopilot — tesla. [Online]. Available: https://www.tesla.com/autopilot
  3. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” CoRR, vol. abs/1505.04597, 2015. [Online]. Available: http://arxiv.org/abs/1505.04597
  4. V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional encoder-decoder architecture for image segmentation,” CoRR, vol. abs/1511.00561, 2015. [Online]. Available: http://arxiv.org/abs/1511.00561
  5. A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “Enet: A deep neural network architecture for real-time semantic segmentation,” CoRR, vol. abs/1606.02147, 2016. [Online]. Available: http://arxiv.org/abs/1606.02147
  6. Z. Wang, W. Ren, and Q. Qiu, “Lanenet: Real-time lane detection networks for autonomous driving,” CoRR, vol. abs/1807.01726, 2018.
  7. A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany, J. S. Emer, S. W. Keckler, and W. J. Dally, “SCNN: an accelerator for compressed-sparse convolutional neural networks,” CoRR, vol. abs/1708.04485, 2017. [Online]. Available: http://arxiv.org/abs/1708.04485
  8. Y. Hou, Z. Ma, C. Liu, and C. C. Loy, “Learning lightweight lane detection cnns by self attention distillation,” CoRR, vol. abs/1908.00821, 2019.
  9. D. Wu, M. Liao, W. Zhang, and X. Wang, “YOLOP: you only look once for panoptic driving perception,” CoRR, vol. abs/2108.11250, 2021. [Online]. Available: https://arxiv.org/abs/2108.11250
  10. C. Han, Q. Zhao, S. Zhang, Y. Chen, Z. Zhang, and J. Yuan, “Yolopv2: Better, faster, stronger for panoptic driving perception,” 2022.
  11. D. Vu, B. Ngo, and H. Phan, “Hybridnets: End-to-end perception network,” 2022.
  12. Y. Qian, J. M. Dolan, and M. Yang, “Dlt-net: Joint detection of drivable areas, lane lines, and traffic objects,” IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 11, pp. 4670–4679, 2020.
  13. M. Teichmann, M. Weber, J. M. Zöllner, R. Cipolla, and R. Urtasun, “Multinet: Real-time joint semantic reasoning for autonomous driving,” CoRR, vol. abs/1612.07695, 2016. [Online]. Available: http://arxiv.org/abs/1612.07695
  14. S. Mehta, M. Rastegari, A. Caspi, L. G. Shapiro, and H. Hajishirzi, “Espnet: Efficient spatial pyramid of dilated convolutions for semantic segmentation,” CoRR, vol. abs/1803.06815, 2018. [Online]. Available: http://arxiv.org/abs/1803.06815
  15. J. Fu, J. Liu, H. Tian, Z. Fang, and H. Lu, “Dual attention network for scene segmentation,” CoRR, vol. abs/1809.02983, 2018. [Online]. Available: http://arxiv.org/abs/1809.02983
  16. P. Wang, P. Chen, Y. Yuan, D. Liu, Z. Huang, X. Hou, and G. W. Cottrell, “Understanding convolution for semantic segmentation,” CoRR, vol. abs/1702.08502, 2017. [Online]. Available: http://arxiv.org/abs/1702.08502
  17. H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing network,” CoRR, vol. abs/1612.01105, 2016. [Online]. Available: http://arxiv.org/abs/1612.01105
  18. Y. Ko, Y. Lee, S. Azam, F. Munir, M. Jeon, and W. Pedrycz, “Key points estimation and point instance segmentation approach for lane detection,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 7, pp. 8949–8958, 2022.
  19. Z. Qin, P. Zhang, and X. Li, “Ultra fast deep lane detection with hybrid anchor driven ordinal classification,” IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–14, 2022.
  20. K. He, G. Gkioxari, P. Dollár, and R. B. Girshick, “Mask R-CNN,” CoRR, vol. abs/1703.06870, 2017. [Online]. Available: http://arxiv.org/abs/1703.06870
  21. J. Zhang, Y. Xu, B. Ni, and Z. Duan, “Geometric constrained joint lane segmentation and lane boundary detection,” in Computer Vision – ECCV 2018, V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, Eds.   Cham: Springer International Publishing, 2018, pp. 502–518.
  22. K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level performance on imagenet classification,” CoRR, vol. abs/1502.01852, 2015. [Online]. Available: http://arxiv.org/abs/1502.01852
  23. T. Lin, P. Goyal, R. B. Girshick, K. He, and P. Dollár, “Focal loss for dense object detection,” CoRR, vol. abs/1708.02002, 2017. [Online]. Available: http://arxiv.org/abs/1708.02002
  24. S. S. M. Salehi, D. Erdogmus, and A. Gholipour, “Tversky loss function for image segmentation using 3d fully convolutional deep networks,” CoRR, vol. abs/1706.05721, 2017. [Online]. Available: http://arxiv.org/abs/1706.05721
  25. C. H. Sudre, W. Li, T. Vercauteren, S. Ourselin, and M. J. Cardoso, “Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations,” CoRR, vol. abs/1707.03237, 2017. [Online]. Available: http://arxiv.org/abs/1707.03237
  26. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2017.
  27. S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” CoRR, vol. abs/1502.03167, 2015. [Online]. Available: http://arxiv.org/abs/1502.03167
  28. F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan, and T. Darrell, “Bdd100k: A diverse driving dataset for heterogeneous multitask learning,” 2020.
Citations (9)

Summary

We haven't generated a summary for this paper yet.