Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Make-A-Volume: Leveraging Latent Diffusion Models for Cross-Modality 3D Brain MRI Synthesis (2307.10094v1)

Published 19 Jul 2023 in eess.IV and cs.CV

Abstract: Cross-modality medical image synthesis is a critical topic and has the potential to facilitate numerous applications in the medical imaging field. Despite recent successes in deep-learning-based generative models, most current medical image synthesis methods rely on generative adversarial networks and suffer from notorious mode collapse and unstable training. Moreover, the 2D backbone-driven approaches would easily result in volumetric inconsistency, while 3D backbones are challenging and impractical due to the tremendous memory cost and training difficulty. In this paper, we introduce a new paradigm for volumetric medical data synthesis by leveraging 2D backbones and present a diffusion-based framework, Make-A-Volume, for cross-modality 3D medical image synthesis. To learn the cross-modality slice-wise mapping, we employ a latent diffusion model and learn a low-dimensional latent space, resulting in high computational efficiency. To enable the 3D image synthesis and mitigate volumetric inconsistency, we further insert a series of volumetric layers in the 2D slice-mapping model and fine-tune them with paired 3D data. This paradigm extends the 2D image diffusion model to a volumetric version with a slightly increasing number of parameters and computation, offering a principled solution for generic cross-modality 3D medical image synthesis. We showcase the effectiveness of our Make-A-Volume framework on an in-house SWI-MRA brain MRI dataset and a public T1-T2 brain MRI dataset. Experimental results demonstrate that our framework achieves superior synthesis results with volumetric consistency.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Lingting Zhu (20 papers)
  2. Zeyue Xue (9 papers)
  3. Zhenchao Jin (16 papers)
  4. Xian Liu (37 papers)
  5. Jingzhen He (2 papers)
  6. Ziwei Liu (368 papers)
  7. Lequan Yu (89 papers)
Citations (26)

Summary

We haven't generated a summary for this paper yet.