Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-Supervised Acoustic Word Embedding Learning via Correspondence Transformer Encoder (2307.09871v1)

Published 19 Jul 2023 in eess.AS

Abstract: Acoustic word embeddings (AWEs) aims to map a variable-length speech segment into a fixed-dimensional representation. High-quality AWEs should be invariant to variations, such as duration, pitch and speaker. In this paper, we introduce a novel self-supervised method to learn robust AWEs from a large-scale unlabelled speech corpus. Our model, named Correspondence Transformer Encoder (CTE), employs a teacher-student learning framework. We train the model based on the idea that different realisations of the same word should be close in the underlying embedding space. Specifically, we feed the teacher and student encoder with different acoustic instances of the same word and pre-train the model with a word-level loss. Our experiments show that the embeddings extracted from the proposed CTE model are robust to speech variations, e.g. speakers and domains. Additionally, when evaluated on Xitsonga, a low-resource cross-lingual setting, the CTE model achieves new state-of-the-art performance.

Citations (3)

Summary

We haven't generated a summary for this paper yet.