Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ProNav: Proprioceptive Traversability Estimation for Legged Robot Navigation in Outdoor Environments (2307.09754v4)

Published 19 Jul 2023 in cs.RO

Abstract: We propose a novel method, ProNav, which uses proprioceptive signals for traversability estimation in challenging outdoor terrains for autonomous legged robot navigation. Our approach uses sensor data from a legged robot's joint encoders, force, and current sensors to measure the joint positions, forces, and current consumption respectively to accurately assess a terrain's stability, resistance to the robot's motion, risk of entrapment, and crash. Based on these factors, we compute the appropriate robot gait to maximize stability, which leads to reduced energy consumption. Our approach can also be used to predict imminent crashes in challenging terrains and execute behaviors to preemptively avoid them. We integrate ProNav with an exteroceptive-based method to navigate real-world environments with dense vegetation, high granularity, negative obstacles, etc. Our method shows an improvement up to 40% in terms of success rate and up to 15.1% reduction in terms of energy consumption compared to exteroceptive-based methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. Z. Chen, T. Fan, X. Zhao, J. Liang, C. Shen, H. Chen, D. Manocha, J. Pan, and W. Zhang, “Autonomous social distancing in urban environments using a quadruped robot,” IEEE Access, vol. 9, pp. 8392–8403, 2021.
  2. S. B. Goldberg, M. W. Maimone, and L. Matthies, “Stereo vision and rover navigation software for planetary exploration,” in Proceedings, IEEE aerospace conference, vol. 5.   IEEE, 2002, pp. 5–5.
  3. C. D. Bellicoso, M. Bjelonic, L. Wellhausen, K. Holtmann, F. Günther, M. Tranzatto, P. Fankhauser, and M. Hutter, “Advances in real-world applications for legged robots,” Journal of Field Robotics, vol. 35, no. 8, pp. 1311–1326, 2018.
  4. E. Tennakoon, T. Peynot, J. Roberts, and N. Kottege, “Probe-before-step walking strategy for multi-legged robots on terrain with risk of collapse,” in 2020 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2020, pp. 5530–5536.
  5. A. J. Sathyamoorthy, K. Weerakoon, T. Guan, M. Russell, D. Conover, J. Pusey, and D. Manocha, “Vern: Vegetation-aware robot navigation in dense unstructured outdoor environments,” arXiv preprint arXiv:2303.14502, 2023.
  6. J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning quadrupedal locomotion over challenging terrain,” Science robotics, vol. 5, no. 47, p. eabc5986, 2020.
  7. H. Kolvenbach, C. Bärtschi, L. Wellhausen, R. Grandia, and M. Hutter, “Haptic inspection of planetary soils with legged robots,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1626–1632, 2019.
  8. T. Guan, D. Kothandaraman, R. Chandra, A. J. Sathyamoorthy, K. Weerakoon, and D. Manocha, “Ga-nav: Efficient terrain segmentation for robot navigation in unstructured outdoor environments,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 8138–8145, 2022.
  9. C. Kertész, “Rigidity-based surface recognition for a domestic legged robot,” IEEE Robotics and automation letters, vol. 1, no. 1, pp. 309–315, 2016.
  10. S. Fahmi, V. Barasuol, D. Esteban, O. Villarreal, and C. Semini, “Vital: Vision-based terrain-aware locomotion for legged robots,” IEEE Transactions on Robotics, 2022.
  11. A. Agarwal, A. Kumar, J. Malik, and D. Pathak, “Legged locomotion in challenging terrains using egocentric vision,” in Conference on Robot Learning.   PMLR, 2023, pp. 403–415.
  12. D. B. Gennery, “Traversability analysis and path planning for a planetary rover,” Autonomous Robots, vol. 6, pp. 131–146, 1999.
  13. S. Pütz, T. Wiemann, J. Sprickerhof, and J. Hertzberg, “3d navigation mesh generation for path planning in uneven terrain,” IFAC-PapersOnLine, vol. 49, no. 15, pp. 212–217, 2016.
  14. Z. Fu, A. Kumar, A. Agarwal, H. Qi, J. Malik, and D. Pathak, “Coupling vision and proprioception for navigation of legged robots,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 17 273–17 283.
  15. T. Homberger, L. Wellhausen, P. Fankhauser, and M. Hutter, “Support surface estimation for legged robots,” in 2019 International Conference on Robotics and Automation (ICRA).   IEEE, 2019, pp. 8470–8476.
  16. A. H. Al-dabbagh and R. Ronsse, “A review of terrain detection systems for applications in locomotion assistance,” Robotics and Autonomous Systems, vol. 133, p. 103628, 2020.
  17. J. Carius, R. Ranftl, V. Koltun, and M. Hutter, “Trajectory optimization for legged robots with slipping motions,” IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 3013–3020, 2019.
  18. S. Teng, M. W. Mueller, and K. Sreenath, “Legged robot state estimation in slippery environments using invariant extended kalman filter with velocity update,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 3104–3110.
  19. D. W. Haldane, P. Fankhauser, R. Siegwart, and R. S. Fearing, “Detection of slippery terrain with a heterogeneous team of legged robots,” in 2014 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2014, pp. 4576–4581.
  20. J. Frey, D. Hoeller, S. Khattak, and M. Hutter, “Locomotion policy guided traversability learning using volumetric representations of complex environments,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 5722–5729.
  21. L. Wellhausen, R. Ranftl, and M. Hutter, “Safe robot navigation via multi-modal anomaly detection,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1326–1333, 2020.
  22. M. Aladem, S. Baek, and S. A. Rawashdeh, “Evaluation of image enhancement techniques for vision-based navigation under low illumination,” Journal of Robotics, vol. 2019, 2019.
  23. F. Schilling, X. Chen, J. Folkesson, and P. Jensfelt, “Geometric and visual terrain classification for autonomous mobile navigation,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2017, pp. 2678–2684.
  24. D. Wisth, M. Camurri, and M. Fallon, “Vilens: Visual, inertial, lidar, and leg odometry for all-terrain legged robots,” IEEE Transactions on Robotics, 2022.
  25. K. Weerakoon, A. J. Sathyamoorthy, J. Liang, T. Guan, U. Patel, and D. Manocha, “Graspe: Graph based multimodal fusion for robot navigation in unstructured outdoor environments,” arXiv preprint arXiv:2209.05722, 2022.
  26. A. J. Sathyamoorthy, K. Weerakoon, T. Guan, J. Liang, and D. Manocha, “Terrapn: Unstructured terrain navigation using online self-supervised learning,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 7197–7204.
  27. T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning robust perceptive locomotion for quadrupedal robots in the wild,” Science Robotics, vol. 7, no. 62, p. eabk2822, 2022.
  28. A. Loquercio, A. Kumar, and J. Malik, “Learning visual locomotion with cross-modal supervision,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 7295–7302.
  29. S. Dey, D. Fan, R. Schmid, A. Dixit, K. Otsu, T. Touma, A. F. Schilling, and A.-A. Agha-Mohammadi, “Prepare: Predictive proprioception for agile failure event detection in robotic exploration of extreme terrains,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 4338–4343.
  30. J. Truong, A. Zitkovich, S. Chernova, D. Batra, T. Zhang, J. Tan, and W. Yu, “Indoorsim-to-outdoorreal: Learning to navigate outdoors without any outdoor experience,” arXiv preprint arXiv:2305.01098, 2023.
  31. L. Wellhausen and M. Hutter, “Artplanner: Robust legged robot navigation in the field,” arXiv preprint arXiv:2303.01420, 2023.
  32. P. Biswal and P. K. Mohanty, “Development of quadruped walking robots: A review,” Ain Shams Engineering Journal, vol. 12, no. 2, pp. 2017–2031, 2021.
  33. T. Overbye and S. Saripalli, “Path optimization for ground vehicles in off-road terrain,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 7708–7714.
  34. M. F. Ginting, S.-K. Kim, O. Peltzer, J. Ott, S. Jung, M. J. Kochenderfer, and A.-a. Agha-mohammadi, “Safe and efficient navigation in extreme environments using semantic belief graphs,” arXiv preprint arXiv:2304.00645, 2023.
  35. J. Guzzi, R. O. Chavez-Garcia, L. M. Gambardella, and A. Giusti, “On the impact of uncertainty for path planning,” in 2019 International Conference on Robotics and Automation (ICRA).   IEEE, 2019, pp. 5929–5935.
  36. R. O. C. García, M. A. Estrada, M. Ebrahimi, F. Zuppichini, L. M. Gambardella, A. Giusti, and A. J. Ijspeert, “Gait-dependent traversability estimation on the k-rock2 robot,” in 2022 26th International Conference on Pattern Recognition (ICPR).   IEEE, 2022, pp. 4204–4210.
  37. M. Hutter, C. Gehring, D. Jud, A. Lauber, C. D. Bellicoso, V. Tsounis, J. Hwangbo, K. Bodie, P. Fankhauser, M. Bloesch, R. Diethelm, S. Bachmann, A. Melzer, and M. Hoepflinger, “Anymal - a highly mobile and dynamic quadrupedal robot,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016, pp. 38–44.
  38. “Ghost vision 60,” http://www.stonexperu.com/pdf/GR%20Vision%2060-P%20Quad%20UGV-%20Full%20Spec%20rev4.0˙STN.pdf, Ghost Robotics Corp., [Online; accessed 17-January-2024].
  39. “About spot,” https://dev.bostondynamics.com/docs/concepts/about˙spot, Boston Dynamics, [Online; accessed 17-January-2024].
  40. D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23–33, 1997.
  41. P. Try and M. Gebhard, “A vibration sensing device using a six-axis imu and an optimized beam structure for activity monitoring,” Sensors, vol. 23, no. 19, p. 8045, 2023.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Mohamed Elnoor (14 papers)
  2. Adarsh Jagan Sathyamoorthy (23 papers)
  3. Kasun Weerakoon (21 papers)
  4. Dinesh Manocha (366 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.