Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Evacuation Planning through Multi-Agent Simulation and Artificial Intelligence: Understanding Human Behavior in Hazardous Environments (2307.09485v1)

Published 11 Jun 2023 in cs.MA and cs.AI

Abstract: This paper focuses on the crucial task of addressing the evacuation of hazardous places, which holds great importance for coordinators, event hosts, and authorities. To facilitate the development of effective solutions, the paper employs AI techniques, specifically Multi-Agent Systems (MAS), to construct a simulation model for evacuation. NetLogo is selected as the simulation tool of choice due to its ability to provide a comprehensive understanding of human behaviour in distressing situations within hazardous environments. The primary objective of this paper is to enhance our comprehension of how individuals react and respond during such distressing situations. By leveraging AI and MAS, the simulation model aims to capture the complex dynamics of evacuation scenarios, enabling policymakers and emergency planners to make informed decisions and implement more efficient and effective evacuation strategies. This paper endeavours to contribute to the advancement of evacuation planning and ultimately improve the safety and well-being of individuals in hazardous places

Summary

We haven't generated a summary for this paper yet.