Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Energy Efficient Deep Multi-Label ON/OFF Classification of Low Frequency Metered Home Appliances (2307.09244v2)

Published 18 Jul 2023 in cs.LG and cs.AI

Abstract: Non-intrusive load monitoring (NILM) is the process of obtaining appliance-level data from a single metering point, measuring total electricity consumption of a household or a business. Appliance-level data can be directly used for demand response applications and energy management systems as well as for awareness raising and motivation for improvements in energy efficiency. Recently, classical machine learning and deep learning (DL) techniques became very popular and proved as highly effective for NILM classification, but with the growing complexity these methods are faced with significant computational and energy demands during both their training and operation. In this paper, we introduce a novel DL model aimed at enhanced multi-label classification of NILM with improved computation and energy efficiency. We also propose an evaluation methodology for comparison of different models using data synthesized from the measurement datasets so as to better represent real-world scenarios. Compared to the state-of-the-art, the proposed model has its energy consumption reduced by more than 23% while providing on average approximately 8 percentage points in performance improvement when evaluating on data derived from REFIT and UK-DALE datasets. We also show a 12 percentage point performance advantage of the proposed DL based model over a random forest model and observe performance degradation with the increase of the number of devices in the household, namely with each additional 5 devices, the average performance degrades by approximately 7 percentage points.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. A. Q. Al-Shetwi, M. Hannan, K. P. Jern, M. Mansur, and T. Mahlia, “Grid-connected renewable energy sources: Review of the recent integration requirements and control methods,” Journal of Cleaner Production, vol. 253, p. 119831, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0959652619347018
  2. J. Aghaei and M.-I. Alizadeh, “Demand response in smart electricity grids equipped with renewable energy sources: A review,” Renewable and Sustainable Energy Reviews, vol. 18, pp. 64–72, 2013. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1364032112005205
  3. R. Gopinath, M. Kumar, C. Prakash Chandra Joshua, and K. Srinivas, “Energy management using non-intrusive load monitoring techniques – state-of-the-art and future research directions,” Sustainable Cities and Society, vol. 62, p. 102411, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2210670720306326
  4. G. Hart, “Nonintrusive appliance load monitoring,” Proceedings of the IEEE, vol. 80, no. 12, pp. 1870–1891, 1992.
  5. K. Ehrhardt-Martinez, K. A. Donnelly, S. Laitner et al., “Advanced metering initiatives and residential feedback programs: a meta-review for household electricity-saving opportunities,” in Advanced metering initiatives and residential feedback programs: a meta-review for household electricity-saving opportunities.   American Council for an Energy-Efficient Economy Washington, DC, 2010.
  6. A. Rahimpour, H. Qi, D. Fugate, and T. Kuruganti, “Non-intrusive energy disaggregation using non-negative matrix factorization with sum-to-k constraint,” IEEE Trans. on Power Systems, vol. 32, no. 6, pp. 4430–4441, 2017.
  7. J. Kolter, S. Batra, and A. Ng, “Energy disaggregation via discriminative sparse coding,” Advances in neural information processing systems, vol. 23, 2010.
  8. S. Singh and A. Majumdar, “Deep sparse coding for non–intrusive load monitoring,” IEEE Trans. on Smart Grid, vol. 9, no. 5, pp. 4669–4678, 2017.
  9. M. Figueiredo, B. Ribeiro, and A. de Almeida, “Electrical signal source separation via nonnegative tensor factorization using on site measurements in a smart home,” IEEE Trans. on Instrumentation and Measurement, vol. 63, no. 2, pp. 364–373, 2013.
  10. K. T. Chui, M. D. Lytras, and A. Visvizi, “Energy sustainability in smart cities: Artificial intelligence, smart monitoring, and optimization of energy consumption,” Energies, vol. 11, no. 11, p. 2869, 2018.
  11. X. Wu, Y. Gao, and D. Jiao, “Multi-label classification based on random forest algorithm for non-intrusive load monitoring system,” Processes, vol. 7, no. 6, 2019. [Online]. Available: https://www.mdpi.com/2227-9717/7/6/337
  12. B. Buddhahai, W. Wongseree, and P. Rakkwamsuk, “A non-intrusive load monitoring system using multi-label classification approach,” Sustainable Cities and Society, vol. 39, pp. 621–630, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2210670717315366
  13. M. Zhou, S. Shao, X. Wang, Z. Zhu, and F. Hu, “Deep learning-based non-intrusive commercial load monitoring,” Sensors, vol. 22, no. 14, 2022. [Online]. Available: https://www.mdpi.com/1424-8220/22/14/5250
  14. L. Massidda, M. Marrocu, and S. Manca, “Non-intrusive load disaggregation by convolutional neural network and multilabel classification,” Applied Sciences, vol. 10, no. 4, 2020. [Online]. Available: https://www.mdpi.com/2076-3417/10/4/1454
  15. B. Bertalanič and C. Fortuna, “Carmel: Capturing spatio-temporal correlations via time-series sub-window imaging for home appliance classification,” Engineering Applications of Artificial Intelligence, vol. 127, p. 107318, 2024.
  16. G. Tanoni, E. Principi, and S. Squartini, “Multi-label appliance classification with weakly labeled data for non-intrusive load monitoring,” IEEE Trans. on Smart Grid, pp. 1–1, 2022.
  17. M. W. Asres, L. Ardito, and E. Patti, “Computational cost analysis and data-driven predictive modeling of cloud-based online-nilm algorithm,” IEEE Transactions on Cloud Computing, vol. 10, no. 4, pp. 2409–2423, 2022.
  18. G.-F. Angelis, C. Timplalexis, S. Krinidis, D. Ioannidis, and D. Tzovaras, “Nilm applications: Literature review of learning approaches, recent developments and challenges,” Energy and Buildings, vol. 261, p. 111951, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0378778822001220
  19. A. Langevin, M.-A. Carbonneau, M. Cheriet, and G. Gagnon, “Energy disaggregation using variational autoencoders,” Energy and Buildings, vol. 254, p. 111623, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0378778821009075
  20. Y. Pan, K. Liu, Z. Shen, X. Cai, and Z. Jia, “Sequence-to-subsequence learning with conditional gan for power disaggregation,” in 2020 IEEE International Conf. on Acoustics, Speech and Signal Processing (ICASSP), 2020, pp. 3202–3206.
  21. M. D’Incecco, S. Squartini, and M. Zhong, “Transfer learning for non-intrusive load monitoring,” IEEE Trans. on Smart Grid, vol. 11, no. 2, pp. 1419–1429, 2020.
  22. L. Wang, S. Mao, B. M. Wilamowski, and R. M. Nelms, “Pre-trained models for non-intrusive appliance load monitoring,” IEEE Trans. on Green Communications and Networking, vol. 6, no. 1, pp. 56–68, 2022.
  23. C. Zhang, M. Zhong, Z. Wang, N. Goddard, and C. Sutton, “Sequence-to-point learning with neural networks for non-intrusive load monitoring,” in 32nd AAAI Conf. on Artificial Intelligence (AAAI-18), 2018. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/11873
  24. J. Kelly and W. Knottenbelt, “Neural nilm: Deep neural networks applied to energy disaggregation,” in 2nd ACM international Conf. on embedded systems for energy-efficient built environments (BuildSys ’15), ser. BuildSys ’15.   New York, NY, USA: Association for Computing Machinery, 2015, p. 55–64. [Online]. Available: https://doi.org/10.1145/2821650.2821672
  25. ——, “Neural nilm: Deep neural networks applied to energy disaggregation,” in Proceedings of the 2nd ACM international conference on embedded systems for energy-efficient built environments, 2015, pp. 55–64.
  26. G. A. Raiker, U. Loganathan, S. Agrawal, A. S. Thakur, K. Ashwin, J. P. Barton, M. Thomson et al., “Energy disaggregation using energy demand model and iot-based control,” IEEE Trans. on Industry Applications, vol. 57, no. 2, pp. 1746–1754, 2020.
  27. F. Ciancetta, G. Bucci, E. Fiorucci, S. Mari, and A. Fioravanti, “A new convolutional neural network-based system for nilm applications,” IEEE Trans. on Instrumentation and Measurement, vol. 70, pp. 1–12, 2021.
  28. J. Chen, X. Wang, X. Zhang, and W. Zhang, “Temporal and spectral feature learning with two-stream convolutional neural networks for appliance recognition in nilm,” IEEE Trans. on Smart Grid, vol. 13, no. 1, pp. 762–772, 2022.
  29. S. M. Tabatabaei, S. Dick, and W. Xu, “Toward non-intrusive load monitoring via multi-label classification,” IEEE Trans. on Smart Grid, vol. 8, no. 1, pp. 26–40, 2017.
  30. S. Singh and A. Majumdar, “Non-intrusive load monitoring via multi-label sparse representation-based classification,” IEEE Trans. on Smart Grid, vol. 11, no. 2, pp. 1799–1801, 2020.
  31. H. Çimen, E. J. Palacios-Garcia, N. Çetinkaya, J. C. Vasquez, and J. M. Guerrero, “A dual-input multi-label classification approach for non-intrusive load monitoring via deep learning,” in 2020 Zooming Innovation in Consumer Technologies Conference (ZINC), 2020, pp. 259–263.
  32. Z. Zhou, Y. Xiang, H. Xu, Y. Wang, and D. Shi, “Unsupervised learning for non-intrusive load monitoring in smart grid based on spiking deep neural network,” Journal of Modern Power Systems and Clean Energy, vol. 10, no. 3, pp. 606–616, 2022.
  33. H. Yin, K. Zhou, and S. Yang, “Non-intrusive load monitoring by load trajectory and multi feature based on dcnn,” IEEE Trans. on Industrial Informatics, pp. 1–12, 2023.
  34. D. Li, K. Sawyer, and S. Dick, “Disaggregating household loads via semi-supervised multi-label classification,” in 2015 Annual Conf. of the North American Fuzzy Information Processing Society (NAFIPS), 2015, pp. 1–5.
  35. M. A. A. Rehmani, S. Aslam, S. R. Tito, S. Soltic, P. Nieuwoudt, N. Pandey, and M. D. Ahmed, “Power profile and thresholding assisted multi-label nilm classification,” Energies, vol. 14, no. 22, 2021. [Online]. Available: https://www.mdpi.com/1996-1073/14/22/7609
  36. A. Pirnat, B. Bertalanič, G. Cerar, M. Mohorčič, M. Meža, and C. Fortuna, “Towards sustainable deep learning for wireless fingerprinting localization,” in IEEE International Conference on Communications (ICC 2022), 2022, pp. 3208–3213.
  37. M. A. Ahajjam, C. Essayeh, M. Ghogho, and A. Kobbane, “On multi-label classification for non-intrusive load identification using low sampling frequency datasets,” in 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 2021, pp. 1–6.
  38. M. Verhelst and B. Moons, “Embedded deep neural network processing: Algorithmic and processor techniques bring deep learning to iot and edge devices,” IEEE Solid-State Circuits Magazine, vol. 9, no. 4, pp. 55–65, 2017.
  39. E. García-Martín, C. F. Rodrigues, G. Riley, and H. Grahn, “Estimation of energy consumption in machine learning,” Journal of Parallel and Distributed Computing, vol. 134, pp. 75–88, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0743731518308773
  40. D. Murray, L. Stankovic, and V. Stankovic, “An electrical load measurements dataset of united kingdom households from a two-year longitudinal study,” Scientific data, vol. 4, no. 1, pp. 1–12, 2017. [Online]. Available: https://doi.org/10.1038/sdata.2016.122
  41. J. Kelly and W. Knottenbelt, “The uk-dale dataset, domestic appliance-level electricity demand and whole-house demand from five uk homes,” Scientific data, vol. 2, no. 1, pp. 1–14, 2015.
  42. D. García-Pérez, D. Pérez-López, I. Díaz-Blanco, A. González-Muñiz, M. Domínguez-González, and A. A. Cuadrado Vega, “Fully-convolutional denoising auto-encoders for nilm in large non-residential buildings,” IEEE Trans. on Smart Grid, vol. 12, no. 3, pp. 2722–2731, 2021.
  43. M. Zhang, W. Wang, X. Liu, J. Gao, and Y. He, “Navigating with graph representations for fast and scalable decoding of neural language models,” Advances in neural information processing systems, vol. 31, 2018.
  44. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in 3rd International Conference on Learning Representations (ICLR 2015).   Computational and Biological Learning Society, 2015.
  45. W. Kong, Z. Y. Dong, B. Wang, J. Zhao, and J. Huang, “A practical solution for non-intrusive type ii load monitoring based on deep learning and post-processing,” IEEE Trans. on Smart Grid, vol. 11, no. 1, pp. 148–160, 2020.
  46. D. Yang, X. Gao, L. Kong, Y. Pang, and B. Zhou, “An event-driven convolutional neural architecture for non-intrusive load monitoring of residential appliance,” IEEE Trans. on Consumer Electronics, vol. 66, no. 2, pp. 173–182, 2020.
  47. C. Klemenjak, C. Kovatsch, M. Herold, and W. Elmenreich, “A synthetic energy dataset for non-intrusive load monitoring in households,” Scientific data, vol. 7, no. 1, p. 108, 2020.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets