Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decomposing imaginary time Feynman diagrams using separable basis functions: Anderson impurity model strong coupling expansion (2307.08566v3)

Published 17 Jul 2023 in cond-mat.str-el, cs.NA, and math.NA

Abstract: We present a deterministic algorithm for the efficient evaluation of imaginary time diagrams based on the recently introduced discrete Lehmann representation (DLR) of imaginary time Green's functions. In addition to the efficient discretization of diagrammatic integrals afforded by its approximation properties, the DLR basis is separable in imaginary time, allowing us to decompose diagrams into linear combinations of nested sequences of one-dimensional products and convolutions. Focusing on the strong coupling bold-line expansion of generalized Anderson impurity models, we show that our strategy reduces the computational complexity of evaluating an $M$th-order diagram at inverse temperature $\beta$ and spectral width $\omega_{\max}$ from $\mathcal{O}((\beta \omega_{\max}){2M-1})$ for a direct quadrature to $\mathcal{O}(M (\log (\beta \omega_{\max})){M+1})$, with controllable high-order accuracy. We benchmark our algorithm using third-order expansions for multi-band impurity problems with off-diagonal hybridization and spin-orbit coupling, presenting comparisons with exact diagonalization and quantum Monte Carlo approaches. In particular, we perform a self-consistent dynamical mean-field theory calculation for a three-band Hubbard model with strong spin-orbit coupling representing a minimal model of Ca$_2$RuO$_4$, demonstrating the promise of the method for modeling realistic strongly correlated multi-band materials. For both strong and weak coupling expansions of low and intermediate order, in which diagrams can be enumerated, our method provides an efficient, straightforward, and robust black-box evaluation procedure. In this sense, it fills a gap between diagrammatic approximations of the lowest order, which are simple and inexpensive but inaccurate, and those based on Monte Carlo sampling of high-order diagrams.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (74)
  1. G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).
  2. L. Hedin, Phys. Rev. 139, A796 (1965).
  3. D. Golze, M. Dvorak, and P. Rinke, Front. Chem. 7, 377 (2019).
  4. T. A. Costi, J. Kroha, and P. Wölfle, Phys. Rev. B 53, 1850 (1996).
  5. J. Kroha and P. Wölfle, in Advances in Solid State Physics 39, edited by B. Kramer (Springer Berlin Heidelberg, Berlin, Heidelberg, 1999) pp. 271–280.
  6. H. Keiter and J. Kimball, J. Appl. Phys. 42, 1460 (1971).
  7. N. Grewe and H. Keiter, Phys. Rev. B 24, 4420 (1981).
  8. M. Eckstein and P. Werner, Phys. Rev. B 82, 115115 (2010).
  9. T. Pruschke and N. Grewe, Z. Phys. B Condens. Matter 74, 439 (1989).
  10. E. Gull, D. R. Reichman, and A. J. Millis, Phys. Rev. B 82, 075109 (2010).
  11. K. Haule, arXiv:2311.09412 [cond-mat.str-el] (2023).
  12. K. Haule and G. Kotliar, Phys. Rev. B 76, 104509 (2007).
  13. D. Golež, M. Eckstein, and P. Werner, Phys. Rev. B 92, 195123 (2015).
  14. R. Korytár and N. Lorente, J. Phys. Condens. Matter 23, 355009 (2011).
  15. D. Golež, M. Eckstein, and P. Werner, Phys. Rev. B 100, 235117 (2019).
  16. K. Haule, C.-H. Yee, and K. Kim, Phys. Rev. B 81, 195107 (2010).
  17. A. N. Rubtsov, V. V. Savkin, and A. I. Lichtenstein, Phys. Rev. B 72, 035122 (2005).
  18. P. Werner and A. J. Millis, Phys. Rev. B 74, 155107 (2006).
  19. K. Haule, Phys. Rev. B 75, 155113 (2007).
  20. N. Prokof’ev and B. Svistunov, Phys. Rev. Lett. 99, 250201 (2007).
  21. R. Rossi, Phys. Rev. Lett. 119, 045701 (2017).
  22. F. Šimkovic and E. Kozik, Phys. Rev. B 100, 121102 (2019).
  23. A. Moutenet, W. Wu, and M. Ferrero, Phys. Rev. B 97, 085117 (2018).
  24. H. U. R. Strand, J. Kleinhenz, and I. Krivenko, arXiv:2310.16957 [cond-mat.str-el] (2023).
  25. E. Eidelstein, E. Gull, and G. Cohen, Phys. Rev. Lett. 124, 206405 (2020).
  26. G. Zhang and E. Pavarini, Phys. Rev. B 95, 075145 (2017).
  27. J. Kaye, K. Chen, and O. Parcollet, Phys. Rev. B 105, 235115 (2022a).
  28. Q. Han and A. Millis, Phys. Rev. Lett. 121, 067601 (2018).
  29. A. Liebsch and H. Ishida, Phys. Rev. Lett. 98, 216403 (2007).
  30. A. B. Georgescu and A. J. Millis, Commun. Phys. 5, 135 (2022).
  31. F. Aryasetiawan and S. Biermann, Phys. Rev. Lett. 100, 116402 (2008).
  32. M. Jarrell, Phys. Rev. Lett. 69, 168 (1992).
  33. G. Beylkin and L. Monzón, Appl. Comput. Harmon. Anal. 19, 17 (2005).
  34. G. Beylkin and L. Monzón, Appl. Comput. Harmon. Anal. 28, 131 (2010).
  35. Y. Zhang, C. Zhuang, and S. Jiang, Commun. Comput. Phys. 29, 1570 (2021).
  36. Z. Gao, J. Liang, and Z. Xu, J. Sci. Comput. 93, 10.1007/s10915-022-01999-1 (2022).
  37. L. Greengard and P. Lin, Appl. Comput. Harmon. Anal. 9, 83 (2000).
  38. S. Jiang, L. Greengard, and S. Wang, Adv. Comput. Math. 41, 529 (2015).
  39. B. Alpert, L. Greengard, and T. Hagstrom, J. Comput. Phys. 180, 270 (2002).
  40. S. Jiang and L. Greengard, Comput. Math. Appl. 47, 955 (2004).
  41. S. Jiang and L. Greengard, Commun. Pure Appl. Math. 61, 261 (2008).
  42. L. Greengard and V. Rokhlin, Acta Numer. 6, 229–269 (1997).
  43. H. Cheng, L. Greengard, and V. Rokhlin, J. Comput. Phys. 155, 468 (1999).
  44. T. Hrycak and V. Rokhlin, SIAM J. Sci. Comput. 19, 1804 (1998).
  45. S. Jiang and L. Greengard, Commun. Comput. Phys. 31, 1 (2021).
  46. Z. Gimbutas, N. F. Marshall, and V. Rokhlin, Appl. Comput. Harmon. Anal. 49, 815 (2020).
  47. A. Barnett, P. Greengard, and M. Rachh, arXiv:2305.11065 [math.NA] (2023).
  48. N. Tsuji and P. Werner, Phys. Rev. B 88, 165115 (2013).
  49. B. Fornberg and J. A. Reeger, Numer. Math. 141, 1 (2019).
  50. B. Fornberg, SIAM Rev. 63, 167 (2021).
  51. B. K. Alpert, SIAM J. Sci. Comput. 20, 1551 (1999).
  52. J. Kaye, K. Chen, and H. U. R. Strand, Comput. Phys. Commun. 280, 108458 (2022b).
  53. N. Chikano, J. Otsuki, and H. Shinaoka, Phys. Rev. B 98, 035104 (2018).
  54. H. LaBollita, J. Kaye, and A. Hampel, arXiv:2310.01266 [cond-mat.str-el] (2023).
  55. J. Kaye and H. U. R. Strand, Adv. Comput. Math. 49, 10.1007/s10444-023-10067-7 (2023).
  56. H. Shinaoka and Y. Nagai, Phys. Rev. B 103, 045120 (2021).
  57. Z. Huang, E. Gull, and L. Lin, Phys. Rev. B 107, 075151 (2023).
  58. J. Kaye and H. U. R. Strand, libdlr v1.0.0 (2022).
  59. J. Kanamori, Prog. Theor. Phys. 30, 275 (1963).
  60. S. Hoshino and P. Werner, Phys. Rev. B 93, 155161 (2016).
  61. H. Hafermann, K. R. Patton, and P. Werner, Phys. Rev. B 85, 205106 (2012).
  62. S. Sugano, Multiplets of transition-metal ions in crystals (Elsevier, 2012).
  63. G. Khaliullin, Phys. Rev. Lett. 111, 197201 (2013).
  64. A. Akbari and G. Khaliullin, Phys. Rev. B 90, 035137 (2014).
  65. G. L. Stamokostas and G. A. Fiete, Phys. Rev. B 97, 085150 (2018).
  66. G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102, 017205 (2009).
  67. B. Lenz, C. Martins, and S. Biermann, J. Phys. Condens. Matter 31, 293001 (2019).
  68. B. H. Kim, G. Khaliullin, and B. I. Min, Phys. Rev. Lett. 109, 167205 (2012).
  69. N. H. F. Beebe and J. Linderberg, Int. J. Quantum Chem. 12, 683 (1977).
  70. F. Weigend, M. Kattannek, and R. Ahlrichs, J. Chem. Phys. 130, 164106 (2009).
  71. J. Lu and L. Ying, J. Comput. Phys. 302, 329 (2015).
  72. C.-N. Yeh and M. A. Morales, J. Chem. Theory Comput. 19, 6197 (2023).
  73. K. Pierce, V. Rishi, and E. F. Valeev, J. Chem. Theory Comput. 17, 2217 (2021).
  74. K. Pierce and E. F. Valeev, J. Chem. Theory Comput. 19, 71 (2023).
Citations (7)

Summary

We haven't generated a summary for this paper yet.