Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lipschitz Continuous Algorithms for Covering Problems (2307.08213v2)

Published 17 Jul 2023 in cs.DS

Abstract: Combinatorial algorithms are widely used for decision-making and knowledge discovery, and it is important to ensure that their output remains stable even when subjected to small perturbations in the input. Failure to do so can lead to several problems, including costly decisions, reduced user trust, potential security concerns, and lack of replicability. Unfortunately, many fundamental combinatorial algorithms are vulnerable to small input perturbations. To address the impact of input perturbations on algorithms for weighted graph problems, Kumabe and Yoshida (FOCS'23) recently introduced the concept of Lipschitz continuity of algorithms. This work explores this approach and designs Lipschitz continuous algorithms for covering problems, such as the minimum vertex cover, set cover, and feedback vertex set problems. Our algorithm for the feedback vertex set problem is based on linear programming, and in the rounding process, we develop and use a technique called cycle sparsification, which may be of independent interest.

Citations (1)

Summary

We haven't generated a summary for this paper yet.