Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Negative flows and non-autonomous reductions of the Volterra lattice (2307.08127v2)

Published 16 Jul 2023 in nlin.SI, math-ph, and math.MP

Abstract: We study reductions of the Volterra lattice corresponding to stationary equations for the additional, noncommutative subalgebra of symmetries. It is shown that, in the case of general position, such a reduction is equivalent to the stationary equation for a sum of the scaling symmetry and the negative flows, and is written as $(m+1)$-component difference equations of the Painlev\'e type generalizing the dP$1$ and dP${34}$ equations. For these reductions, we present the isomonodromic Lax pairs and derive the B\"acklund transformations which form the $\mathbb{Z}m$ lattice.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)