Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Domain Generalisation with Bidirectional Encoder Representations from Vision Transformers (2307.08117v1)

Published 16 Jul 2023 in cs.CV and cs.LG

Abstract: Domain generalisation involves pooling knowledge from source domain(s) into a single model that can generalise to unseen target domain(s). Recent research in domain generalisation has faced challenges when using deep learning models as they interact with data distributions which differ from those they are trained on. Here we perform domain generalisation on out-of-distribution (OOD) vision benchmarks using vision transformers. Initially we examine four vision transformer architectures namely ViT, LeViT, DeiT, and BEIT on out-of-distribution data. As the bidirectional encoder representation from image transformers (BEIT) architecture performs best, we use it in further experiments on three benchmarks PACS, Home-Office and DomainNet. Our results show significant improvements in validation and test accuracy and our implementation significantly overcomes gaps between within-distribution and OOD data.

Summary

We haven't generated a summary for this paper yet.