Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
122 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
48 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Dual-level Interaction for Domain Adaptive Semantic Segmentation (2307.07972v2)

Published 16 Jul 2023 in cs.CV

Abstract: Self-training approach recently secures its position in domain adaptive semantic segmentation, where a model is trained with target domain pseudo-labels. Current advances have mitigated noisy pseudo-labels resulting from the domain gap. However, they still struggle with erroneous pseudo-labels near the boundaries of the semantic classifier. In this paper, we tackle this issue by proposing a dual-level interaction for domain adaptation (DIDA) in semantic segmentation. Explicitly, we encourage the different augmented views of the same pixel to have not only similar class prediction (semantic-level) but also akin similarity relationship with respect to other pixels (instance-level). As it's impossible to keep features of all pixel instances for a dataset, we, therefore, maintain a labeled instance bank with dynamic updating strategies to selectively store the informative features of instances. Further, DIDA performs cross-level interaction with scattering and gathering techniques to regenerate more reliable pseudo-labels. Our method outperforms the state-of-the-art by a notable margin, especially on confusing and long-tailed classes. Code is available at \href{https://github.com/RainJamesY/DIDA}

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Github Logo Streamline Icon: https://streamlinehq.com

GitHub