Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Robustness of Split Learning against Adversarial Attacks (2307.07916v2)

Published 16 Jul 2023 in cs.LG, cs.CR, and cs.CV

Abstract: Split learning enables collaborative deep learning model training while preserving data privacy and model security by avoiding direct sharing of raw data and model details (i.e., sever and clients only hold partial sub-networks and exchange intermediate computations). However, existing research has mainly focused on examining its reliability for privacy protection, with little investigation into model security. Specifically, by exploring full models, attackers can launch adversarial attacks, and split learning can mitigate this severe threat by only disclosing part of models to untrusted servers.This paper aims to evaluate the robustness of split learning against adversarial attacks, particularly in the most challenging setting where untrusted servers only have access to the intermediate layers of the model.Existing adversarial attacks mostly focus on the centralized setting instead of the collaborative setting, thus, to better evaluate the robustness of split learning, we develop a tailored attack called SPADV, which comprises two stages: 1) shadow model training that addresses the issue of lacking part of the model and 2) local adversarial attack that produces adversarial examples to evaluate.The first stage only requires a few unlabeled non-IID data, and, in the second stage, SPADV perturbs the intermediate output of natural samples to craft the adversarial ones. The overall cost of the proposed attack process is relatively low, yet the empirical attack effectiveness is significantly high, demonstrating the surprising vulnerability of split learning to adversarial attacks.

Citations (7)

Summary

We haven't generated a summary for this paper yet.