Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Benchmarking the Effectiveness of Classification Algorithms and SVM Kernels for Dry Beans (2307.07863v1)

Published 15 Jul 2023 in cs.LG and cs.AI

Abstract: Plant breeders and agricultural researchers can increase crop productivity by identifying desirable features, disease resistance, and nutritional content by analysing the Dry Bean dataset. This study analyses and compares different Support Vector Machine (SVM) classification algorithms, namely linear, polynomial, and radial basis function (RBF), along with other popular classification algorithms. The analysis is performed on the Dry Bean Dataset, with PCA (Principal Component Analysis) conducted as a preprocessing step for dimensionality reduction. The primary evaluation metric used is accuracy, and the RBF SVM kernel algorithm achieves the highest Accuracy of 93.34%, Precision of 92.61%, Recall of 92.35% and F1 Score as 91.40%. Along with adept visualization and empirical analysis, this study offers valuable guidance by emphasizing the importance of considering different SVM algorithms for complex and non-linear structured datasets.

Citations (1)

Summary

We haven't generated a summary for this paper yet.